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Abstract

Adverse Drug Event (ADE) normalization to
standardized medical terminologies such as
MedDRA presents significant challenges due
to lexical and semantic gaps between colloquial
user-generated content and formal medical vo-
cabularies. This paper presents our submission
to the ALTA 2025 Shared Task on ADE normal-
ization, evaluated using Accuracy@k metrics.
Our approach employs distinct methodologies
for the development and test phase. In the devel-
opment phase, we propose a three-stage neural
architecture: (1) bi-encoder training to estab-
lish semantic representations, (2) lexical-aware
fine-tuning to capture morphological patterns
alongside semantic similarity, and (3) cross-
encoder re-ranking for fine-grained discrimina-
tion, enabling the model to leverage both distri-
butional semantics and lexical cues through ex-
plicit interaction modeling. For the test phase,
we utilize the trained bi-encoder from stage (1)
for efficient candidate retrieval, then adopt an
alternative re-ranking pipeline leveraging large
language models with tool-augmented retrieval
and multi-stage reasoning. Specifically, a ca-
pable model performs reasoning-guided candi-
date selection over the retrieved top-k results, a
lightweight model provides iterative feedback
based on reasoning traces, and an automated
verification module ensures output correctness
with self-correction mechanisms. Our system
achieves competitive performance on both de-
velopment and test benchmarks, demonstrating
the efficacy of neural retrieval-reranking archi-
tectures and the versatility of LLM-augmented
neural pipelines for medical entity normaliza-
tion tasks.

1 Introduction

Analyzing Adverse Drug Events (ADEs) from
patient-generated text is crucial for pharmacovigi-
lance, but normalizing informal mentions to stan-
dardized terminologies like MedDRA remains a
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major bottleneck. This task is difficult due to the
large lexical and semantic gap between colloquial
language and formal clinical terms. Successfully
normalizing these mentions is essential for data ag-
gregation, interoperability, and downstream safety
analyses.

The entity normalization task exhibits inherent
complexity due to the substantial lexical semantic
divergence between colloquial expressions in pa-
tient narratives and the formal, clinically precise
terminology in medical ontologies. Users may de-
scribe adverse events using varied linguistic realiza-
tions, ranging from symptom-focused descriptions
("my stomach hurts badly") to outcome-oriented
expressions ("ended up in ER") — that must be
mapped to canonical concept identifiers. Vocabu-
lary mismatch, morphological variations, abbrevi-
ations, and the inherent ambiguity of natural lan-
guage further exacerbate this many-to-one align-
ment problem.

The ALTA 2025 Shared Task (Mollá et al., 2025)
addresses this challenge by providing a benchmark
for ADE mention normalization to MedDRA Pre-
ferred Terms. Participants are tasked with devel-
oping systems that, given user-generated text with
pre-identified ADE spans, produce ranked lists of
candidate MedDRA concepts. System performance
is assessed using Accuracy@k metrics, with Accu-
racy@1 serving as the primary evaluation criterion,
alongside Accuracy@5 and Accuracy@10 as aux-
iliary measures.

Our submission explores two complementary
paradigms for medical entity normalization. For
the development phase, we develop a three-stage
cascaded neural pipeline. The first stage em-
ploys a dual-encoder built upon SapBERT-from-
PubMedBERT, which projects both ADE mentions
and MedDRA terminologies into a shared seman-
tic space via momentum contrastive optimization
with strategic hard negative sampling. In the sec-
ond stage, we conduct lexical-aware refinement



by leveraging BM25 and TF-IDF-based negative
mining, forcing the encoder to capture character-
level patterns and surface forms in addition to its
semantic understanding. This addresses the chal-
lenge of exact string matching and orthographic
variations that purely neural approaches often strug-
gle with. The third stage deploys a cross-encoder
that performs joint contextualization of mention-
concept pairs through bidirectional attention, facili-
tating direct token interactions for nuanced scoring.
During inference, the dual-encoder rapidly screens
the entire MedDRA vocabulary for top-k candi-
dates, which the cross-encoder then meticulously
re-scores within a manageable pool, achieving an
optimal trade-off between retrieval speed and rank-
ing accuracy.

For the test phase, we explore a complemen-
tary strategy that synergizes our trained bi-encoder
with generative model-based re-assessment. The
bi-encoder from stage (1) first rapidly extracts a
preliminary candidate set from the complete Med-
DRA vocabulary. We then deploy a multi-agent
system to re-prioritize these candidates through
externally-enhanced inference: specifically, Gem-
ini 2.5 Pro Thinking, augmented with web search
capabilities, scrutinizes the extracted candidates
while articulating transparent logical derivations,
after which Gemini 2.5 Flash conducts progressive
enhancement by analyzing the inferential pathways.
A deterministic quality assurance layer enforces
schema adherence and implements autonomous
rectification procedures to resolve structural incon-
sistencies. This integrative approach underscores
the synergy achieved by fusing neural candidate
extraction with the deliberative inference capacities
of contemporary generative models.

Our main contributions are:

• A staged dual-encoder optimization strategy
that incorporates surface-form sensitivity into
dense semantic representations through delib-
erate contrastive sampling.

• A robust pairwise scoring architecture for
modeling nuanced query-candidate relation-
ships via mutual contextualization mecha-
nisms.

• An innovative composite system unifying
rapid neural screening with knowledge-
enhanced generative re-assessment via Gem-
ini 2.5 Pro Thinking and Gemini 2.5 Flash,

featuring cascaded inference, recursive cri-
tique, and programmatic quality control

• Extensive experimental evaluation yielding
strong results on the ALTA 2025 benchmark
across both traditional learned architectures
and integrated neural-generative frameworks.

2 Related Work

2.1 Biomedical Entity Normalization

Biomedical entity normalization maps free-text
mentions to standardized ontologies like MedDRA
(Sung et al., 2020). While traditional lexical meth-
ods are efficient, they fail to bridge the semantic
gap between informal patient language and for-
mal medical terms. This has led to a shift towards
neural approaches that learn dense semantic repre-
sentations for more robust matching.

2.2 Dense Retrieval with Contrastive
Learning

SapBERT and Biomedical Language Mod-
els: (Liu et al., 2021) introduced SapBERT
(Self-Alignment Pretraining for BERT), a pivotal
biomedical language model that employs metric
learning to create semantically meaningful repre-
sentations. SapBERT leverages synonym relations
from ontologies like UMLS to train encoders that
position semantically equivalent terms closer in
embedding space. This self-alignment pretrain-
ing strategy has established SapBERT as a founda-
tional backbone for biomedical entity normaliza-
tion tasks.

2.3 Bi-encoder and Cross-encoder
Architectures

The canonical bi-encoder and cross-encoder frame-
work (Wu et al., 2020) balances efficiency with
accuracy. A bi-encoder first retrieves candidates
efficiently from a large knowledge base. A more
computationally intensive cross-encoder then pre-
cisely re-ranks these candidates by modeling direct
mention-entity interactions.

This two-stage retrieve-then-rerank paradigm
has become the standard approach in entity linking
systems, balancing computational efficiency with
ranking accuracy. Recent work has extended this
framework to biomedical domains, incorporating
domain-specific pretraining and specialized nega-
tive sampling strategies (Li and Yuan, 2022; Sung
et al., 2020).



2.4 Large Language Models for Entity
Normalization

LLM-Augmented Normalization and
Knowledge-Rich Reasoning: Building on
(Dobbins, 2024) multi-stage pipelines, where
LLMs generate paraphrases and prune candidates
to boost biomedical concept normalization
accuracy, and on retrieval-augmented methods that
fuse parametric model knowledge with external
evidence (Lewis et al., 2021), we synthesize
these directions via a hybrid design: efficient
bi-encoder retrieval provides a strong candidate
set, while LLM-based reasoning adds interpretable,
evidence-grounded discrimination that surpasses
purely neural or purely generative approaches.

3 Problem definition and Dataset

3.1 Task Formulation

Given a patient-generated narrative document D
containing informal descriptions of adverse drug
events, and a set of pre-identified mention spans
M = {m1,m2, . . . ,mn} where each mi repre-
sents a text segment describing a potential ADE,
the objective is to map each mention mi to a ranked
list of MedDRA Preferred Terms from a standard-
ized concept vocabulary C = {c1, c2, . . . , ck}.

Formally, for each mention mi with character
offsets [si, ei] in document D, the system must pro-
duce a ranked prediction list L̂i = [ĉ1, ĉ2, . . . , ĉK ]
where ĉj ∈ C and concepts are ordered by decreas-
ing confidence. The ground truth annotation pro-
vides a single canonical concept c∗i ∈ C for each
mention. System performance is evaluated using
Accuracy@k, defined as:

Acc@k =
1

|M |

|M |∑
i=1

⊮
[
c∗i ∈ top-k(L̂i)

]
(1)

where ⊮[·] is the indicator function. The shared
task employs Accuracy@1 as the primary metric,
with Accuracy@5 and Accuracy@10 serving as
secondary evaluation measures.

3.2 Dataset Description

The ALTA 2025 Shared Task dataset comprises
patient-authored narratives extracted from online
drug review forums, representing authentic real-
world adverse event descriptions. The corpus ex-
hibits significant linguistic diversity, encompassing

colloquialisms, grammatical inconsistencies, sub-
jective sentiment expressions, and domain-specific
abbreviations characteristic of user-generated med-
ical content.

Data Statistics: The dataset is partitioned into
training, development, and test splits. The train-
ing set contains labeled instances pairing informal
ADE mentions with their corresponding MedDRA
concept identifiers, enabling supervised model de-
velopment. The development set facilitates hyper-
parameter tuning and model selection, while the
test set evaluates final system performance. Each
instance comprises:

• Document-level context: Complete patient
narrative providing situational context for ad-
verse event interpretation

• Mention-level annotations: Character-offset
spans identifying specific ADE descriptions
within the narrative

• Concept mappings: Ground truth MedDRA
Preferred Term identifiers (concept IDs) rep-
resenting standardized medical terminology

MedDRA Vocabulary: The target concept
space consists of the Medical Dictionary for Reg-
ulatory Activities (MedDRA) Preferred Terms, a
comprehensive hierarchical medical terminology
system widely adopted in pharmacovigilance. The
vocabulary encompasses thousands of standardized
clinical concepts, each uniquely identified by a nu-
merical concept ID paired with a canonical term
string (e.g., “10018836”: “Haematochezia”).

4 Methodology

4.1 Dual-Encoder

The dual-encoder serves as the foundation of our re-
trieval system, independently encoding ADE men-
tions and MedDRA concepts into a shared dense
representation space. We employ a two-stage pro-
gressive training strategy: initial semantic-aware
training establishes fundamental conceptual corre-
spondences, followed by lexical-aware refinement
that explicitly incorporates surface-level matching
signals.

4.1.1 Stage 1: Semantic-Aware Training with
Momentum Contrastive Learning

In the initial training stage, we adopt a momentum-
based contrastive learning (van den Oord et al.,



2019; Chen et al., 2020; Gao et al., 2022) frame-
work to learn robust semantic representations. The
dual-encoder comprises two components: a query
encoder fq(·) for mention embeddings and a key en-
coder fk(·) for concept embeddings, both instanti-
ated from a pre-trained biomedical language model
backbone.

Momentum Encoder Mechanism: (He et al.,
2020) Following the momentum contrast frame-
work, we maintain a momentum-updated key en-
coder fmom

k (·) that evolves as an exponential mov-
ing average of the query encoder parameters:

θmom
k ← m · θmom

k + (1−m) · θq (2)

where m ∈ [0, 1) is the momentum coefficient and
θq, θmom

k denote the parameters of query and mo-
mentum encoders respectively. This momentum
mechanism provides stable and consistent concept
representations throughout training, mitigating rep-
resentation drift as the model parameters evolve.

Contrastive Learning with Hard Negatives:
For each training instance consisting of a mention
m and its ground-truth concept c+, we construct a
contrastive batch containing one positive pair and
multiple hard negative concepts. We optimize us-
ing the InfoNCE loss, which maximizes agreement
between mention embedding q = fq(m) and pos-
itive concept embedding k+ = fmom

k (c+) while
minimizing similarity to K negative concept em-
beddings {k−

i }Ki=1. The loss pulls positive pairs
closer in the embedding space while pushing apart
negative pairs, with similarity measured by cosine
distance and controlled by temperature hyperpa-
rameter τ .

Hard Negative Mining Strategy: (Xiong et al.,
2020) We employ a dynamic hard negative mining
procedure to select challenging contrastive exam-
ples that accelerate convergence and improve dis-
criminative capacity. At each training epoch, we
maintain a fixed-size negative queue Q populated
with concept embeddings from previous batches,
providing a diverse pool of hard negatives beyond
the current batch. Additionally, we periodically
update a global concept embedding cache using
the current momentum encoder, enabling efficient
retrieval of the most confusable concepts based on
semantic similarity to the query mention.

4.1.2 Stage 2: Lexical-Aware Fine-tuning
While the semantic-aware training stage captures
high-level conceptual similarities, it may overlook
surface-level lexical correspondences crucial for

handling exact string matches, abbreviations, and
morphological variations. This phenomenon has
been observed in neural entity linking and relation
extraction systems, where models trained primar-
ily on contextual semantics tend to underweight
exact name matching signals (Peng et al., 2020).
Similarly, dense retrieval models optimized for se-
mantic similarity can exhibit reduced sensitivity
to lexical overlap patterns that prove valuable for
matching queries with high surface-form correspon-
dence (Ren et al., 2021). We address this limitation
through a lexical-aware fine-tuning stage that ex-
plicitly incorporates character-level and token-level
matching signals, ensuring the model maintains
both semantic understanding and lexical sensitiv-
ity.

Lexical-Driven Negative Sampling: Unlike
Stage 1’s semantic-based hard negative mining, we
construct training batches using exclusively lexical
retrieval methods. Specifically, for each mention,
we retrieve hard negative candidates through:

• BM25 Retrieval (Robertson et al., 1995;
Robertson and Zaragoza, 2009): A probabilis-
tic term-weighting scheme that scores candi-
dates based on term frequency and inverse
document frequency statistics, capturing lexi-
cal overlap patterns

• TF-IDF Retrieval (Spärck Jones, 1972;
Salton and Buckley, 1988) : A classical
information retrieval approach emphasizing
distinctive terms while penalizing common
vocabulary, complementing BM25’s scoring
mechanism

These lexical methods retrieve concepts sharing
surface-level characteristics with the query mention
but potentially diverging semantically—precisely
the challenging cases where pure neural models
struggle. By forcing the model to distinguish be-
tween lexically similar but semantically distinct
concepts, we compel it to internalize both distribu-
tional semantics and explicit string matching pat-
terns.

Continued Training with InfoNCE: We con-
tinue optimizing the dual-encoder using the In-
foNCE objective , but with negative examples
sourced exclusively from lexical retrieval. The
training data comprises the same mention-concept
pairs as Stage 1, but the negative sampling distribu-
tion shifts from semantic similarity to lexical over-
lap. This curriculum-style progression—from se-



mantic foundations to lexical refinement—enables
the model to integrate complementary matching
signals without catastrophic forgetting of semantic
knowledge.

Negative Pool Refreshing: To maintain training
diversity and prevent overfitting to static negative
sets, we periodically refresh the lexical negative
pool throughout training. At regular intervals, we
re-run BM25 and TF-IDF retrieval for all training
mentions, incorporating the model’s evolving un-
derstanding of concept relationships. This dynamic
negative sampling ensures the model continuously
encounters challenging examples as its discrimina-
tive capacity improves.

The resulting dual-encoder, after both training
stages, embeds mentions and concepts into a uni-
fied space where geometric proximity reflects both
semantic relatedness and lexical affinity, enabling
robust retrieval across diverse linguistic realizations
of adverse events.

4.2 Cross-Encoder Reranking

While the dual-encoder efficiently retrieves candi-
dates through independent encoding, it lacks the ca-
pacity to model fine-grained interactions between
mention and concept representations. We adopt
a cross-encoder reranking architecture following
the bi-encoder and cross-encoder framework pro-
posed by (Wu et al., 2020), which has demonstrated
strong performance in entity linking tasks.

4.2.1 Cross-Attention Scoring

The cross-encoder processes mention-concept pairs
jointly through a single transformer encoder. Given
a mention m with surrounding context and candi-
date concept c, we construct the concatenated in-
put sequence [CLS]⊕mctx⊕ [SEP]⊕ cdef⊕ [SEP],
where mctx incorporates contextual window around
the mention span and cdef is the concept definition.
The transformer’s bidirectional self-attention en-
ables explicit token-level interactions, with the final
[CLS] representation projected to a scalar matching
score:

score(m, c) = MLP(hCLS) (3)

4.2.2 Training with Hard Negative Mining

The cross-encoder is trained using contrastive learn-
ing with hard negatives mined from both semantic
and lexical retrieval systems. For each training
mention m with ground-truth concept c+, we con-
struct a candidate set by combining:

• Dual-encoder retrievals: Top-KDE candi-
dates from the trained bi-encoder, capturing
semantically and lexically similar concepts

• BM25 retrievals: Top-KBM25 candidates
from lexical matching, emphasizing surface-
level term overlap

This hybrid mining strategy ensures diverse chal-
lenging negatives. We sample N hard negatives per
positive example and optimize using the InfoNCE
loss.

4.2.3 Inference and Reranking
During inference, the dual-encoder first retrieves
top-K candidates from the entire MedDRA vocab-
ulary. The cross-encoder then exhaustively scores
all K mention-concept pairs through joint encod-
ing, producing refined rankings. This cascaded ar-
chitecture balances computational efficiency with
ranking precision, leveraging the complementary
strengths of broad retrieval and fine-grained inter-
action modeling.

4.3 LLM-based Reranking System
For the test phase evaluation, we explore an alterna-
tive paradigm that integrates the trained bi-encoder
with large language model-based reasoning for can-
didate reranking. This approach leverages the gen-
erative and reasoning capabilities of contemporary
foundation models to perform nuanced semantic
matching beyond conventional learned retrieval sys-
tems.

4.3.1 Hybrid Retrieval-Reasoning Pipeline
The system operates in a cascaded fashion, com-
bining efficient neural retrieval with deliberative
reasoning-based reranking. Given a test mention
m, we first employ the bi-encoder from Stage 1
(Section 3.1.1) to rapidly extract a preliminary can-
didate set Ctop-k = {c1, c2, . . . , ck} from the com-
plete MedDRA vocabulary through dense similar-
ity search. This retrieval phase narrows the search
space from thousands of concepts to a tractable
subset of candidates requiring fine-grained assess-
ment.

Subsequently, the retrieved candidates undergo
iterative reranking through a multi-stage reason-
ing system. Unlike conventional reranking models
that rely solely on learned similarity functions, this
pipeline explicitly articulates logical derivations
and medical domain reasoning to justify candidate
selections, enabling interpretable and evidence-
grounded predictions.



4.3.2 Reasoning-Guided Candidate Selection
The primary reasoning component processes each
mention-candidate pair through structured analyti-
cal reasoning augmented with external knowledge
retrieval. Specifically, we employ Gemini 2.5 Pro
Thinking (Comanici et al., 2025), a reasoning-
optimized language model equipped with web
search capabilities, to evaluate the semantic cor-
respondence between informal ADE descriptions
and standardized medical terminology.

For each candidate concept ci ∈ Ctop-k, the
model constructs a detailed assessment that in-
cludes:

• Semantic alignment analysis: Evaluation
of conceptual overlap between the colloquial
mention and clinical definition

• External evidence retrieval: Query-driven
web search to gather medical literature, clini-
cal resources, and pharmacological references
supporting or refuting the candidate mapping

• Explicit reasoning chains: Step-by-step log-
ical derivations articulating why a candidate
may or may not represent the correct normal-
ization

• Confidence scoring: Probabilistic assessment
of mapping correctness based on accumulated
evidence

This reasoning process generates transparent
justifications for each candidate, facilitating inter-
pretability and enabling downstream refinement
based on the logical reasoning traces.

4.3.3 Iterative Refinement through Feedback
To enhance prediction robustness, we introduce a
secondary refinement stage that critically analyzes
the initial reasoning outputs. We employ Gemini
2.5 Flash (Comanici et al., 2025), a computation-
ally efficient variant optimized for rapid inference,
to examine the reasoning traces produced in the
previous stage and propose adjustments.

The refinement model receives as input:

• The original mention and surrounding context

• The top-ranked candidates from the reasoning
stage

• The explicit reasoning chains justifying each
candidate

• The provisional confidence scores

By analyzing these inferential pathways, the re-
finement model identifies potential logical incon-
sistencies, overlooked semantic nuances, or in-
sufficient evidence chains. It may adjust candi-
date rankings, promote undervalued alternatives,
or reinforce high-confidence predictions through
additional supporting rationales. This iterative
critique mechanism serves as a form of self-
verification, improving prediction accuracy through
multi-perspective evaluation.

4.3.4 Automated Verification and Correction
The final stage implements a deterministic quality
assurance layer that ensures structural correctness
and format compliance of the system outputs. This
verification module performs the following checks:

• Schema validation: Ensures output conforms
to the required JSON structure with proper
mention identifiers and ranked concept lists

• Concept ID verification: Validates that all
predicted concept identifiers exist in the Med-
DRA vocabulary

• Ranking consistency: Confirms candidates
are properly ordered and free of duplicates

• Completeness checking: Verifies that predic-
tions exist for all test mentions

When discrepancies are detected—such as mal-
formed concept IDs, invalid rankings, or missing
predictions—the module invokes autonomous rec-
tification procedures. These may include program-
matic corrections (e.g., removing duplicates, refor-
matting identifiers) or, for substantive errors, trig-
gering a lightweight reprocessing of the problem-
atic instances through the refinement stage. This
quality gate ensures that all submitted predictions
meet task specifications while maintaining predic-
tion integrity.

4.3.5 System Integration and Inference
The complete LLM-based pipeline integrates these
components into a cohesive reranking system. The
inference workflow proceeds as:

1. Bi-encoder retrieves top-k candidates (typi-
cally k = 30− 50)

2. Reasoning model evaluates each candidate
with external knowledge augmentation and
generates justifications



3. Refinement model analyzes reasoning traces
and adjusts rankings

4. Verification module validates outputs and ap-
plies corrections

5. Final ranked predictions are produced for eval-
uation

This architecture represents a departure from
purely learned retrieval-reranking systems, incor-
porating symbolic reasoning, external knowledge
access, and explicit verification into the entity nor-
malization pipeline. While computationally more
expensive than neural-only approaches, the system
demonstrates the potential of foundation models
with reasoning capabilities for complex semantic
matching tasks in specialized domains.

5 Experimental Setup

5.1 Dataset and Preprocessing
We use the ALTA 2025 Shared Task corpus
(train/dev/test) with pre-identified ADE spans nor-
malized to MedDRA Preferred Terms. Text
is lowercased, punctuation preserved, and men-
tions are marked in-context with special tags
[MENTION]...[/MENTION]. For concept side, we
index MedDRA PT names plus synonyms/defini-
tions when available. We apply Unicode normaliza-
tion (NFKC) and strip diacritics for robust match-
ing.

5.2 Baselines
We report a lexical baseline and a bi-encoder
and cross-encoder system. Our full development
pipeline adds a cross-encoder reranker; the test-
phase pipeline replaces the cross-encoder with a
multi-agent LLM reranker .

5.3 Development Phase Configuration
We train a SapBERT-based bi-encoder with a two-
stage curriculum: (i) semantic pretraining with
momentum contrastive learning and ANN-mined
hard negatives; (ii) lexical-aware fine-tuning us-
ing BM25/TF-IDF negatives. Retrieval uses co-
sine similarity over mean-pooled embeddings and
FAISS for ANN search. A cross-encoder (same
backbone) reranks the top-K candidates per men-
tion with pairwise joint encoding.

5.4 Test Phase Configuration
At test time, the trained bi-encoder retrieves top-
k candidates. A lightweight multi-agent LLM

Key Hyperparameters (Main Paper Summary)

Backbone cambridgeltl/SapBERT-from-PubMedBERT-fulltext
Emb dim / Pooling 768 / mean pooling
Bi-enc Stage 1 15 epochs, batch 32, LR 1×10−5, InfoNCE (τ=0.05), ANN hard negatives (FAISS)
Bi-enc Stage 2 7 epochs, batch 32, LR 2×10−5, InfoNCE (τ=0.07), BM25+TF-IDF negatives
Negatives (Stage 2) BM25 200 + TF-IDF 200 (pool), 10 negatives/sample, bank 256, remine each epoch
Seq len / Optim 128 tokens / AdamW (wd 0.01, warmup 0.1, grad clip 1.0)
Reranking (Dev) Cross-encoder on top-K=50 (train top-60; 31 negatives/sample)
Reranking (Test) Multi-agent LLM pipeline on top-k=30–50 + deterministic verifier

Table 1: Core settings that affect results.

pipeline performs reasoning-guided reranking with
explicit justifications and a deterministic verifier
for schema/ID validity. Prompts and guardrails are
in Appx. A.

5.5 Evaluation Metrics

We follow the shared task and report Accuracy@1
(primary), Accuracy@5, and Accuracy@10.

6 Results

6.1 Development Phase

We compare three settings on the development split:
(i) Bi-Encoder (dense retrieval only), (ii) Cross-
Encoder (our dev-time reranker), and (iii) LLM
(Multi-Agent) reranking run on the same top-K
candidates as the cross-encoder.1

Metric Bi-Encoder (%) Cross-Encoder (%) LLM (Multi-Agent) (%)

Accuracy@1 0.2889 0.7975 0.7078
Accuracy@5 0.3996 0.9189 0.8593
Accuracy@10 0.4194 0.9441 0.8985

Table 2: Development split. The LLM multi-agent
reranker underperforms the cross-encoder on dev, but
is substantially stronger than bi-encoder only. All
rerankers consume the same top-K retrieved candidates
(here K=50).

6.2 Test Phase

We compare the bi-encoder baseline, cross-encoder
reranking, and the final LLM multi-agent pipeline
on the shared task test set.

Metric Bi-Encoder (%) Cross-Encoder (%) Multi-Agent Pipeline (%)

Accuracy@1 0.2169 0.2048 0.3855
Accuracy@5 0.3855 0.4819 0.5964
Accuracy@10 0.4699 0.5181 0.6506

Table 3: Test set comparison. Cross-encoder generalizes
worse than on development, while the LLM multi-agent
pipeline achieves the best Accuracy@1.

1For fairness, the LLM reranker on dev does not use ex-
ternal web calls; it only reasons over the retrieved candidates
and provided definitions/synonyms.



7 Conclusion

Our ALTA 2025 study shows that fusing lexi-
cal cues with semantic representations markedly
improves medical entity normalization. Lexical-
aware fine-tuning boosts recall on surface-overlap
mentions—evidence that semantic-only models un-
derweight exact matches—while a cross-encoder
re-ranks semantically close candidates and an
LLM-augmented stage adds competitive accuracy
with interpretable traces for safety-critical review.
We reconcile the semantic–lexical tension via
staged (curriculum-style) training that progres-
sively encodes both signals; latency remains a
practical challenge. Overall, robust normalization
requires multi-signal integration: efficient neural
screening, deliberative reasoning, and structured
knowledge working in concert to bridge patient
language and clinical ontologies.

Limitations

Despite achieving strong results, our work has sev-
eral limitations:

Limited Reranking Evaluation. We have
not evaluated the effectiveness of our multi-agent
reranking pipeline at larger scales (top-k > 50).
Understanding how reranking performance scales
with candidate set size is important for practical
deployment scenarios where initial retrieval may
return hundreds of candidates.

Pipeline Generalization Gap. Our bi-encoder
+ cross-encoder pipeline does not yet generalize
consistently across development and test sets, ex-
hibiting performance variance between these splits.
This indicates potential overfitting during pipeline
optimization or insufficient diversity in training
data. Developing architectures that maintain sta-
ble performance across different data distributions
remains an open challenge requiring further investi-
gation into regularization techniques, data augmen-
tation, and ensemble strategies.

These limitations suggest directions for future
work, including curriculum learning for reranking,
cross-validation for robust hyperparameter selec-
tion, and meta-learning approaches for improved
generalization.
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A Prompts for LLM-based Reranking
(ALTA 2025-Compatible)

A.1 Primary Reasoner (Ranking &
Justification)

Goal: Rank top-k MedDRA candidates; return
ranked + preds.

1 System:
2 You are a biomedical normalization

expert for ALTA 2025. Given an
informal

3 ADE mention and top -k MedDRA candidates
(PT_ID + term + short def/synonyms),

4 produce (i) a reasoned ranking and (ii)
the official "preds" list of PT_IDs.

5

6 Developer Rules:
7 - Think step -by-step internally; OUTPUT

JSON ONLY.
8 - Evidence > surface overlap (semantics ,

site , acuity , drug -causality).
9 - Penalize near -miss (wrong organ/scope)

. Prefer correct granularity.
10 - If uncertain , still rank with lower

confidence.
11 - "preds" is used for scoring; use only

{{ allowed_ids }}; unique; len <= {{k
}}.

12

13 User Input:
14 doc_id: {{ doc_id }}
15 mention_index: {{ mention_index }}
16 mention_text: {{ mention_text }}
17 context_text (optional): {{ context_text

}}
18 top_k_candidates (k={{k}}):
19 {{# each candidates }}
20 - id: {{this.id}}
21 term: {{this.term}}
22 def_or_syns: {{this.def_or_syns_1line

}}
23 {{/ each}}
24

25 Return STRICT JSON:
26 {
27 "ranked ": [
28 {"id":" PT_ID","term ":" PT_TERM","

confidence ":0.0 _to_1.0,
29 "rationale ":"<=2 sentences ,

concrete clinical cues"}
30 ],
31 "preds": ["PT_ID","PT_ID2 ","... up to

k ..."]
32 }

A.2 Critic/Refiner (Logic Fix & Reorder)

Goal: Audit Reasoner; fix scope/site; keep schema.

1 System:
2 You are a rigorous biomedical reviewer.

Improve ordering/confidence while
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3 keeping the SAME JSON schema (" ranked" +
"preds").

4

5 Checklist:
6 - Definition alignment (scope , organ/

site).
7 - Granularity (avoid overly broad PTs

for specific mentions).
8 - Lexical traps (high overlap but wrong

concept) -> demote.
9 - Update rationales when changing order/

confidence.
10 - Restrict to {{ allowed_ids }}; "preds"

unique; len <= {{k}}.
11

12 Inputs:
13 - Reasoner JSON: {{ reasoner_json }}
14 - doc_id/mention_index: {{ doc_id }} / {{

mention_index }}
15 - mention/context: {{ mention_text }} / {{

context_text }}
16

17 Return corrected JSON with keys: ranked ,
preds.

A.3 Deterministic Verifier (Schema & ID
Guardrail)

Goal: Enforce submission format; drop invalid/du-
plicate IDs; finalize preds.

1 System:
2 Strict compliance checker for ALTA 2025.
3

4 Rules:
5 1) Required keys: ranked (array), preds

(array of PT_ID strings).
6 2) Deduplicate ranked by "id" (keep

highest confidence).
7 3) preds = ordered IDs from ranked (

highest ->lowest).
8 4) Remove IDs not in {{ allowed_ids }};

truncate to <= {{k}}.
9 5) If ranked becomes empty , synthesize

preds using most plausible fallback
10 from {{ fallback_terms }} (string -

similarity tie -break).
11 6) Output JSON only.
12

13 Input to validate:
14 {{ candidate_json }}
15

16 Return final JSON with ranked and preds.

A.4 Tool-Augmented Retrieval Planner
(Optional)

Goal: Up to 3 compact queries to disambiguate
close PTs.

1 System:
2 Design up to 3 high -precision queries

for authoritative sources (MedDRA ,
EMA , NIH).

3

4 User:
5 Mention: {{ mention_text }}

6 Ambiguous (id|term): {{ ambiguous_subset
}}

7

8 Return:
9 {" queries ":[{"q":"..." ," why":"A vs B"},

10 {"q":"..." ," why":" verify
site"},

11 {"q":"..." ," why":" confirm
definition wording "}]}

A.5 Safe Fallback (Low-Evidence Cases)
Goal: Conservative ranking with honest uncer-
tainty.

1 If evidence is conflicting/insufficient:
2 - Choose least -violating candidate; top

confidence <= 0.45.
3 - Keep allowed_ids; preds length <= {{k

}}.
4 - Output JSON only (ranked + preds) with

uncertainty noted.

A.6 Submission Line Adapter (Per-Mention)
Goal: Emit the exact ALTA submission object per
mention.

1 System:
2 Convert to the ALTA 2025 submission line

.
3

4 Inputs:
5 doc_id: {{ doc_id }}
6 mention_index: {{ mention_index }}
7 verified_json: {{ verified_json }} //

includes "preds": ["PT_ID ",...]
8

9 Return STRICT JSON (single object):
10 {"id":"{{ doc_id }}-{{ mention_index }}",
11 "preds ":[{{ csv_of_verified_ids }}]}
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