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Abstract

We describe Team MonoLink’s system for
the ALTA 2025 Shared Task on normalizing
patient-authored adverse drug event (ADE)
mentions to MedDRA Lowest Level Terms
(LLTs). Our pipeline combines recall-oriented,
synonym-augmented candidate retrieval with
cross-encoder re-ranking and a guideline-aware
LLM discriminator. On the official hidden test
set, our submission tied for first place, achiev-
ing an Accuracy@1 of 39.8%, Accuracy@5 of
78.3%, and Accuracy@10 of 85.5%.

1 Introduction

Adverse drug event (ADE) surveillance is a core pil-
lar of pharmacovigilance, enabling the recognition,
evaluation, and mitigation of therapy-associated
harms (Beninger, 2018, 2020). The Medical Dictio-
nary for Regulatory Activities (MedDRA) is a stan-
dardized, internationally maintained and adopted
terminology that supports this process (Brown
et al., 1999; Mozzicato, 2009). It organizes adverse
events along a five-level hierarchy to facilitate ag-
gregated analyses (Zink et al., 2025). Lowest Level
Terms (LLTs) are the most granular level, designed
to capture an ADE mention’s original phrasing.
In the latest MedDRA edition (v28.1), there are
81,143 active LLTs (MedDRA MSSO, 2025).

Beyond formal reporting channels, patient-
authored text from discussion forums and social
media provides complementary coverage, often
capturing events that are underreported in clini-
cal settings (Golder et al., 2015; Pappa and Ster-
gioulas, 2019; Golder et al., 2024). However, map-
ping these ADE mentions to regulated vocabu-
laries such as MedDRA is nontrivial because of
misspellings, figurative language, and nonstandard
phrasing (Khan et al., 2025).

The sixteenth ALTA Shared Task (2025) targeted
normalizing (linking) patient ADE mentions in En-
glish text to MedDRA LLTs (Mollá et al., 2025).

Given a forum-style post and one or more pre-
extracted ADE mentions, systems were required to
return, for each mention, a ranked list of MedDRA
terms judged to be the best mappings. Systems
were ranked by Accuracy@1, with Accuracy@5
and Accuracy@10 reported as reference metrics.
McNemar’s test was applied to top-1 outcomes
to test for significant differences between submis-
sions.

This paper presents Team MonoLink’s system
for the shared task. Our approach consists of a
synonym-aware candidate retrieval phase, followed
by a candidate re-ranking phase that attempts to dis-
criminate between closely related MedDRA terms.
On the task’s hidden test set, our system achieved
the highest scores on the official and reference met-
rics and was a joint winner. Ordering the top Med-
DRA terms for each ADE mention proved to be a
challenging task, with the system producing an Ac-
curacy@1 of 39.8% and an Accuracy@5 of 78.3%.

2 Task Definition and Data

2.1 Dataset and Annotations

The development data were derived from the
CADEC corpus of patient forum posts, with a train-
ing set of 4,200 mentions and a validation set of
849 mentions labeled with MedDRA terms (Karimi
et al., 2015; Dai et al., 2024). The organizers also
supplied a JSON file of MedDRA concepts with
numeric identifiers and textual descriptions. For
the final evaluation, an unseen test set of 83 men-
tions was released. Each post was accompanied by
sentence boundary annotations, and each mention
included character offsets.

2.2 Shared Task Rules

Submissions were required to be fully automatic.
External resources (e.g., vocabularies and data)
were permitted provided that they did not contain
or reveal gold labels for the held-out test instances.



3 Data Preparation and Development
Splits

3.1 Preprocessing

Label corrections During early error analysis,
we identified a small number of clear, repeated
annotation errors in the official training/validation
splits (e.g., “General weakness in my calves” la-
beled as Flatulence; “mood swings” labeled as Pain
in fingers). To reduce noise during development,
we manually corrected 81 training labels and 18
validation labels.

Spelling correction We applied a lightweight
correction pass using symspellpy (v6.9.0), with a
conservative maximum edit distance of 1 to resolve
clear misspellings while minimizing changes to col-
loquialisms. Before correction, we removed nonal-
phanumeric characters (e.g., #, !, @) and collapsed
repeated letters (e.g., soooooo → so). For the refer-
ence dictionary, we combined the package’s default
English lexicon with medical terms from UMLS
2025AA (MRCONSO), sourcing from MedDRA,
SNOMED CT US, CHV, HPO, and MeSH (Boden-
reider, 2004; U.S. National Library of Medicine,
2025). Medical term frequencies were up-weighted
to prioritize them over general-English suggestions.

Context extraction To address occasional
sentence-boundary errors, we re-segmented posts
with PyRuSH through MedSpaCy (v1.3.1). For each
ADE mention, we retained its source sentence and
a ±1 sentence window as context for re-ranking.

MedDRA to UMLS alignment We mapped each
task-supplied MedDRA concept to a UMLS Con-
cept Unique Identifier (CUI) using UMLS 2025AA
(MRCONSO) (Bodenreider, 2004; U.S. National
Library of Medicine, 2025). If a MedDRA concept
had no CUI entry (∼0.1% of cases), we retained its
MedDRA identifier. We then expanded each CUI
with additional synonyms from SNOMED CT US
and the Consumer Health Vocabulary (CHV). The
resulting synonym table contained 127,919 terms
covering 48,315 unique concept identifiers (∼2.65
synonyms per concept).

3.2 External Datasets and Augmentation

To expand the pool of data available for develop-
ment, we incorporated additional public datasets
following the same cleaning and UMLS alignment
approach:

• SMM4H-2017: ADE mentions from social
media (tweets) (Sarker et al., 2018).

• PsyTAR: patient forum ADE mentions (Zol-
noori et al., 2019).

• MedNorm: an aggregated dataset for medical
concept normalization (Belousov et al., 2019).

To avoid leakage from CADEC data within Med-
Norm, we only used data from TwADR-L (Lim-
sopatham and Collier, 2016), TwiMed (Alvaro
et al., 2017), and TAC 2017 ADR (Demner-
Fushman et al., 2018).

3.3 Generalization Set for Model Selection

We identified a notable overlap between the offi-
cial training and validation splits. Of 288 unique
MedDRA concepts in the validation set, 219 (76%)
also appeared in training, and 35.3% of mentions
matched training mentions verbatim. To more crit-
ically assess system generalization during devel-
opment, we constructed a generalization set by
sampling mentions that (i) map to less frequent
concepts (CUI frequency below the 75th percentile
across all datasets) and (ii) favor longer spans by
stratifying into length bins. The final set comprised
486 mentions: 231 from the official training split,
51 from the official validation split, and 204 from
SMM4H-2017. We used this set for model selec-
tion and evaluation (identifiers available upon re-
quest).

4 Method

4.1 Overview

Figure 1 summarizes our system. After prepro-
cessing and synonym-table curation, we retrieve
candidate CUIs, and then re-rank at the MedDRA
LLT level.

4.2 Stage 1: Candidate Retrieval

We retrieve at the CUI level using a synonym table
built from the task-supplied MedDRA terms and
the UMLS. Operating at the CUI level (i) enables
synonym expansion to increase recall, (ii) reduces
the label space by collapsing surface-form variants
(e.g., hand pain vs. pain in hand), and (iii) provides
a bridge for integrating external datasets.

Retrieval uses exact nearest-neighbor search (co-
sine similarity) via FAISS v1.12.0. We combine a
sparse lexical retriever (character n-gram TF-IDF)



Figure 1: System overview. First-stage retrieval produces up to 400 UMLS CUI candidates per mention. A
cross-encoder then re-ranks candidate CUI descriptions, and the highest-scoring subset is expanded to MedDRA
LLTs (max. 300). A listwise LLM re-ranker, prompted with MedDRA rules and examples, returns the top 10 LLTs.

with an ensemble of three off-the-shelf dense bi-
encoders. Prior work shows that lexical and seman-
tic methods are complementary (Kuzi et al., 2020;
Gao et al., 2021).

Character n-gram TF-IDF Mentions and can-
didate strings are encoded with a character-level
TF-IDF model (scikit-learn v1.7.1). We use
character-level TF-IDF for robustness to mis-
spellings and morphology (preprocessing and hy-
perparameters in Appendix B). We select the top
100 candidate CUIs per mention.

Dense retrievers We take the union of the top
100 candidates from three off-the-shelf bi-encoders
(no fine-tuning):

1. cambridgeltl/SapBERT-from-PubMedBERT-
fulltext (∼109M parameters), a biomedical
embedding model pretrained on UMLS
synonyms (Liu et al., 2021).

2. NovaSearch/stella_en_400M_v5 (∼435M pa-
rameters), a general-purpose text embedding
model obtained by distillation from larger
LLMs (Zhang et al., 2024). We observed best
performance using its s2p prompt.

3. ls-da3m0ns/bge_large_medical (∼335M pa-
rameters), a medically adapted variant of the
BGE family (Chen et al., 2024).

The models retrieve partially complementary
candidates, so we take their union rather than
relying on a single model. For a given CUI,
we assign it the best rank given by any of the

retrievers. We ran retrieval using Tokenizers
v0.22.0, Transformers v4.56.0, PyTorch v2.8.0,
and Python 3.10.18.

Candidate fusion We fuse the sparse and dense
ensemble CUI ranks using Reciprocal Rank Fu-
sion (RRF), with a fusion constant of 60. In the
process, we deduplicate CUIs but preserve the best-
matching dense and sparse synonyms for down-
stream scoring (these can differ). The theoret-
ical upper bound is 400 unique CUIs per men-
tion (4×100). Because we retain up to two best-
matched descriptions per CUI (one from the dense
ensemble, one from the sparse retriever), the up-
per bound on retrieved CUI descriptions is 800. In
practice, however, due to overlaps, on the general-
ization set we observe a median of 250 CUIs per
mention (IQR 222–278) and 292 unique descrip-
tion strings (IQR 265–320).

4.3 Stage 2: Expansion and Re-ranking

CUI-level cross-encoder. We fine-tune
cambridgeltl/BioRedditBERT-uncased as a cross-
encoder with Sentence Transformers v5.1.0.
BioRedditBERT is initialized from BioBERT and
further pre-trained on health-related Reddit posts
(Basaldella et al., 2020). We train on the candidate
retrieval outputs from the official and external
datasets, and evaluate using the generalization
set (hyperparameters in Appendix C). Training
uses a listwise objective (LambdaLoss) with
positives from correctly retrieved descriptions or
ground-truth CUI synonyms and hard negatives
mined from top-ranked false positives. The



positive-to-negative ratio was approximately 1:7.

MedDRA expansion and filtering Cross-
encoder scores are used to filter CUIs, balancing
recall and candidate count. When two descriptions
for a given CUI receive different scores, we
keep the highest-scoring term for ranking. CUIs
surpassing the threshold are deterministically
expanded to their MedDRA term(s) in the order
given by the task-provided JSON. We then filter
out non-current terms and entries that are neither
LLTs nor PTs (using UMLS metadata), and cap
the list at the top 300 MedDRA terms per mention
to control LLM context.

Few-shot LLM re-ranker We pass the resulting
MedDRA candidates for a mention, along with
surrounding context, to Gemini 2.5 Pro in a single
listwise prompt that returns the indices of the top
10 LLTs. The prompt encodes MedDRA term-
selection principles and tie-breaking advice, and
includes few-shot examples derived from public
training materials and development data. Decoding
and prompt details are in Appendix G.

5 Experiments and Results

5.1 Candidate Retrieval
We evaluate first-stage retrieval with Recall@k on
the official training/validation splits and on the cu-
rated generalization set (Table 1). On the label-
corrected training and validation splits, Recall@all
is approximately 99%, limiting error propagation
to the re-ranking stage. Recall is lower on the gen-
eralization set, reflecting the challenge of longer
spans and less-frequent concepts.

Split R@10 R@50 R@100 R@all

Training 81.3 90.8 94.1 97.5
+ label corrections 82.9 92.3 95.6 99.1
Validation 81.0 89.5 92.6 97.4
+ label corrections 83.0 91.6 94.7 99.2
Generalization set 64.4 82.7 87.4 93.8

Table 1: Candidate retrieval results at the UMLS CUI
level on the official training/validation set (± label cor-
rections) and the generalization set (R = Recall@k, %).

An evaluation of each retrieval component in
isolation is presented in Appendix D.

5.2 Candidate Re-ranking
Table 2 reports the official test results for our
system versus the shared-task reference baseline,

which used edit-distance-based similarity. The
large gap indicates that lexical similarity alone is
insufficient for normalization from patient-written
ADE mentions.

Model A@1 A@5 A@10

Our system 39.8 78.3 85.5
Task reference baseline 12.1 13.3 16.9

Table 2: Official test set performance at the MedDRA
LLT level (A = Accuracy@k, %).

The relatively wide difference between Accu-
racy@1 and Accuracy@5, with a smaller gain from
Accuracy@5 to Accuracy@10, reflects a challenge
of LLT-level discrimination. Many top 10 candi-
dates are near-synonyms or surface-level variants.
For example, in Figure 1, six of the top 10 candi-
dates from our system are grouped under UMLS
CUI C0080274 (urinary retention). It is possible
that institution- or coder-specific preferences may
be required to guide selection in these situations.

Ablations on the generalization set (Appendix F)
at the re-ranking stage show that removing the
LLM re-ranker substantially reduces performance,
underscoring the value of leveraging its internal
knowledge and providing guideline-based instruc-
tions and examples.

6 Conclusion and Future Work

We present a pipeline for normalizing patient-
authored ADE mentions to MedDRA that tied for
first place on the shared task, substantially outper-
forming a lexical baseline. In practice, the system
reliably shortlists appropriate LLTs, but its Accu-
racy@1 of 39.8% remains insufficient for fully au-
tomatic normalization without human oversight.

Future improvements include fine-tuning a bi-
encoder as a lower-latency alternative to the cross-
encoder, exploring alternative LLMs, and adding
dataset- or institution-specific tie-break conven-
tions to the system prompt.

7 Limitations

Our work has several limitations. Although we in-
clude multiple datasets, the system’s portability to
other writing styles or terminologies is uncertain.
While feasible on consumer hardware, through-
put constraints and API costs from the multi-stage
pipeline may hinder large-scale normalization.
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A Hardware Details

All experiments were conducted on Windows 10
with a single NVIDIA RTX 4070 Ti (12 GB
VRAM) and 32 GB system RAM.

B TF-IDF Configuration

Text is lowercased, punctuation is removed, and
start- and end-markers are added at word bound-
aries. We use a character-level TfidfVectorizer
(2-5 character n-grams) with sublinear term fre-
quency, smoothed inverse document frequency, L1

normalization, and no vocabulary pruning.

C Cross-Encoder Configuration

For training, we used the LambdaLoss objective
with the NDCG Loss2++ weighting scheme and
k = 20. We trained for up to 20 epochs with
early stopping on generalization set mean average
precision (converged at epoch 3). Additional hy-
perparameters are listed in Table 6.

Component Setting

Max sequence length 128
Train batch size 128
Optimizer AdamW (fused)
LR schedule Cosine
Learning rate 3× 10−5

Weight decay 0.01
Warmup ratio 0.1

Table 6: Hyperparameters used for cross-encoder fine-
tuning.

D Retrieval Variant Results

We compared the performance of individual re-
trieval components with the final hybrid approach
on the generalization set at the UMLS CUI level
(Table 3). All dense retrievers outperformed TF-
IDF alone, reflecting their ability to handle non-
standard wording and phrasing. The hybrid ap-
proach yielded the best overall coverage (highest
Recall@all), although it exhibited lower recall at
smaller values of k. stella_en_400M_v5 achieved
the strongest single-model performance, outper-
forming the domain-adapted SapBERT model.

E Cross-Encoder Results

Table 4 reports CUI-level retrieval performance be-
fore and after cross-encoder re-ranking on the gen-
eralization set. The cross-encoder improved mid-
and large-k recall by rescuing tail cases but slightly
worsened performance at very small k. Despite
performing similarly to the initial retrieval results,
its ability to provide unified scores for candidate
filtering increased its utility.

F Re-ranking Stage Ablations

Ablations in Table 5 isolate each component’s con-
tribution at the MedDRA LLT level. Filtering
out non-current MedDRA terms reduces recall, al-
though this practice aligns with MedDRA guide-
lines. Adding the cross-encoder yields a pattern of
performance difference similar to that observed at
the CUI level (Table 4). The higher Recall@300
without cross-encoder re-ranking is due to a lack
of score threshold filtering.

G LLM Configuration

We queried Gemini 2.5 Pro via its API with dy-
namic thinking enabled, temperature = 0.1, top-
p = 0.9, and top-k = 40.
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Recall@10 Recall@50 Recall@100 Recall@all

Variant Value ∆ Value ∆ Value ∆ Value ∆

Dense+Sparse Hybrid 64.4 0.0 82.7 0.0 87.4 0.0 93.8 0.0
Dense Ensemble Alone 67.9 3.5 78.6 −4.1 85.0 −2.4 93.4 −0.4
stella_en_400M_v5 77.6 13.2 88.3 5.6 91.4 4.0 91.4 −2.4
BGE_large_medical 73.5 9.1 87.7 5.0 90.1 2.7 90.1 −3.7
SapBERT 67.9 3.5 80.7 −2.0 84.2 −3.2 84.2 −9.6
Sparse Alone (TF-IDF) 53.9 −10.5 71.6 −11.1 77.2 −10.2 77.2 −16.6

Table 3: Retrieval performance on the generalization set at the UMLS CUI level, using Recall@k (%). ∆ shows
the absolute difference in Recall relative to the Dense+Sparse Hybrid (final system). “Dense Ensemble Alone” is
the union of the three dense models (no TF-IDF). Single-model rows use only that retriever. Recall@all measures
recall when taking all candidates returned by that variant. The highest-scoring variant for each metric is bolded.

Model Recall@1 Recall@5 Recall@10 Recall@50 Recall@100

Original 37.2 56.4 64.4 82.7 87.4
Cross-encoder re-rank 35.0 58.8 67.0 83.4 89.7

Table 4: CUI-level retrieval before and after cross-encoder re-ranking (Recall@k, %).

Model Recall@1 Recall@5 Recall@10 Recall@50 Recall@100 Recall@300

CE + Filtering + LLM Re-rank 35.5 70.2 80.5 — — —
CE + Filtering 23.4 50.0 60.6 83.7 87.6 92.2
CE 24.1 50.7 61.0 84.0 89.7 94.7
Filtering without CE 25.5 55.0 61.4 78.7 86.9 93.6

Table 5: Ablations at the MedDRA LLT level on the generalization-set subset of mentions with sentence context
available (i.e. shared-task data only). Recall@k (%). Dashes (—) indicate not applicable. CE = cross-encoder
re-rank. Filtering = exclusion of non-current, non-LLT/PT terms. The highest scoring condition for each metric is
bolded.

System prompt The system prompt used for
each mention was as follows:

You are a clinical coding assistant specializing in
MedDRA. Your job is listwise re-ranking:
given (a) one short adverse event (AE) men-
tion/verbatim (“MENTION_TEXT”), (b)
the same mention within its original text,
wrapped in <mention>. . . </mention> tags
(“MENTION_IN_CONTEXT”), and (c) a set
of candidate MedDRA code DESCRIPTIONS,
return ONLY a JSON object with 1-based indices
of the TOP 10 most relevant candidates in
DESCENDING order of relevance.

## INPUT FIELDS
- MENTION_TEXT: the exact AE span only (the
’verbatim’).
- MENTION_IN_CONTEXT: the full user text
surrounding the mention, with the AE span
wrapped in <mention>. . . </mention>.
- CANDIDATES: list of candidate MedDRA
LLT/PT DESCRIPTIONS, 1-based.

## WHAT TO OPTIMIZE
Re-rank candidates to the best-fitting MedDRA
Lowest Level Term (LLT) for MENTION_TEXT,
following MedDRA Term Selection principles.
Use MENTION_IN_CONTEXT only to

DISAMBIGUATE the span (e.g., body site,
finding vs. disorder, intended meaning), not to
introduce additional reportable concepts.

## HARD RULES
- Use ONLY the provided candidates. Do NOT
invent or rewrite terms.
- While an attempt was made to rank candidates
by relevance, the initial order may be arbitrary.
Re-rank and consider ALL candidates, even ones
in the middle and end of the list.
- Focus on coding exactly what is reported in
the span; do NOT add unmentioned diagnoses,
causality, temporality, severity, or etiology.
- Interpret lay language, misspellings and slang
using best medical judgement. Text is sourced
from patient forums.
- Do not “up-normalize” from lay to medical:
if both lay and medical LLTs express the same
concept at the same specificity, prefer the
LLT that best matches the reported wording in
MENTION_TEXT.
- Singular vs plural candidates: If singular/plural
variants imply different medical concepts, choose
the one that best represents the span’s meaning
rather than the grammar.
- Spelling variants (UK/US) and word order
variants: if both are viable and equally specific,
prefer the variant/word order that most closely
matches MENTION_TEXT.



- Prefer a single LLT that matches a combined
concept when a suitable combination term is
present (e.g., “Itchy rash”). Otherwise, represent
the concepts individually; “split” only when no
single candidate captures the distinct concepts.
- Body site vs medical event: if an “event + site”
LLT exists and context shows the site is integral
or prevents confusion, prefer that combined term.
Otherwise prioritize the EVENT over the site.
- Definitive diagnosis with signs/symptoms in
the same span: prioritize the diagnosis (do not
double-code signs/symptoms contained within
the diagnosis unless the diagnosis is uncertain).
- Investigations:
- If result direction is unambiguous (e.g.,
numeric with units below/above range), prefer a
directional result LLT (e.g., “Blood glucose low”
/ “Potassium increased”).
- If ambiguous or the text and result direction
conflict, prefer a non-directional abnormal result
(e.g., “Glucose abnormal”).
- Prefer investigation-result terms (e.g., “Low
blood glucose” over disease diagnoses (e.g.,
“Hypoglycemia”) when only a test result is
reported.
- If the span clearly implies multiple distinct
reportable concepts and no single candidate
captures them, rank strong candidates for each
concept near the top (“split” behavior).
- Pre-existing conditions: if the span reflects
an event on a background of an unchanged
pre-existing condition, code the event (unless
a single appropriate combination term exists).
If the span reflects an event that alters (e.g.,
aggravates) a pre-existing condition, prefer a
corresponding LLT.
- Neoplasms: do not infer malignancy unless
explicitly stated.
- Suicide/self-harm/overdose: do not assume
overdose means suicide, or that ideation
implies action; code exactly what is stated (e.g.,
Accidental overdose vs Intentional overdose).
- When MENTION_IN_CONTEXT conflicts
with the MENTION_TEXT: the span wins. Use
surrounding context only to clarify the span’s
meaning.
- Consider the nuances between Impairment /
abnormality / disease / disorder:
- Use investigation-result terms for test findings
(increased/decreased/abnormal); do not infer a
disorder from a result.
- Use disorder/disease terms only when a clinical
condition is actually reported.
- Use impairment/disability/person-status terms
when that is what is reported, not a medical
condition.
- Adjective Use: Prefer the adjective form, e.g.,
“cardiac” or “hepatic” instead of the noun (e.g.,
“heart” or “liver”). The exceptions are when the
term is not normally stated as such in common
practice (e.g., “heart attack” over “cardiac
attack”).

## TIE-BREAKERS (apply in order)
1) Exact/near-exact semantic match to MEN-
TION_TEXT that best captures the reporter’s
words or intended meaning (including number,
spelling variant, and word order).
2) Appropriateness of the description’s category

(e.g., sign/symptom vs disorder vs personal
circumstance) to what the span reports.
3) Appropriate combination or event+site LLT
when justified by the span/context without adding
unmentioned information.
4) Higher clinical specificity over generic
wording, without assuming site/etiology not in
the span/context.
5) If two candidates are the same concept but one
is “NOS”, prefer the non-NOS candidate.
6) If two candidates are equivalent and differ only
in word order or spelling variant, prefer the one
closest to MENTION_TEXT; if still tied, prefer
the UK spelling option and/or the earlier 1-based
index mention.
7) If still tied after all above, prefer the candidate
with the earlier 1-based index.

## OUTPUT
- Return ONLY JSON with schema: { "ranking":
[i1, i2, . . . , iK] }
- Indices are 1-based and unique. K = min(10,
number of candidates).
- Do NOT output any text outside the JSON.

## QUALITY CHECKS (after ranking)
- Indices must be within range.
- No unreported information is present in the top
candidate.
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