Simple and Effective Baselines for Code Summarisation Evaluation

Jade Robinson and Jonathan K. Kummerfeld
The University of Sydney
jonathan.kummerfeld@sydney.edu.au

Abstract

Code documentation is useful, but writing it is
time-consuming. Different techniques for gen-
erating code summaries have emerged, but com-
paring them is difficult because human evalu-
ation is expensive and automatic metrics are
unreliable. In this paper, we introduce a sim-
ple new baseline in which we ask an LLM to
give an overall score to a summary. Unlike
n-gram and embedding-based baselines, our
approach is able to consider the code when
giving a score. This allows us to also make
a variant that does not consider the reference
summary at all, which could be used for other
tasks, e.g., to evaluate the quality of documen-
tation in code bases. We find that our method
is as good or better than prior metrics, though
we recommend using it in conjunction with
embedding-based methods to avoid the risk of
LLM-specific bias.

1 Introduction

Relevant and up-to-date documentation is useful
for software maintenance (Stapleton et al., 2020;
Misra et al., 2020; de Souza et al., 2006). To
support one important form of documentation, re-
searchers have developed models that generate
one-line summaries of functions (Hu et al., 2018a;
LeClair et al., 2020; Nguyen et al., 2024a, inter
alia). However, evaluating these models is dif-
ficult. Expert human evaluations are expensive,
slow to collect, and hard to consistently reproduce.
Automatic metrics are cheap and consistent, but
they have weak-to-moderate correlation with hu-
man scores (Roy et al., 2021; Haque et al., 2022;
Mastropaolo et al., 2024). Methods in text sum-
marisation evaluation can be applied to code, but
the difference in modality (code vs. text) means
metrics that compare a summary with its source are
unlikely to be adaptable.

In this paper, we introduce a simple baseline:
directly querying an LLM to get an overall rating
of a generated summary. This approach considers

the code when judging the summary, which most
current metrics do not. We also propose a reference-
free variant, which has not previously been done
for this task. Not needing a reference summary
enables new uses of these metrics, such as to flag
low quality summaries in a code base or as part of
the summary generation process.

We compare with all of the standard n-gram
based metrics, a model-based metric (Mastropaolo
et al., 2024), and embedding-based metrics. We
evaluate by measuring correlation with two datasets
of human judgements (Haque et al., 2022; Roy
et al., 2021). In appendices, we also provide results
on two datasets that consider specific aspects of
summary quality.

Our approach is the best at predicting an overall
score. For similarity with a reference, there is no
significant difference between our approach and
alternatives. We do find a risk that our method
prefers output if it comes from the same LLM as
the metric, and so we recommend using our method
alongside an embedding-based metric.

While evaluation by querying an LLM has been
done in other tasks with natural language outputs,
our results differ from work in other areas. For ex-
ample, unlike in machine translation, our method
remains just as effective without a reference, and it
improves over a metric using a supervised model,
and unlike in QA, our method does not favour
longer (or shorter) summaries. These differences
highlight the distinctiveness of code summarisation
and therefore, the value of research in this space.
Our work provides novel baselines that are simple
and effective, forming a solid foundation for further
exploration.

2 Related Work

Code Summarisation Evaluation N-gram met-
rics, such as BLEU, METEOR, and ROUGE-L,
were the first approach for evaluation, but have low
correlation with human evaluation Roy et al. (2021).

Embedding-based approaches, such as Sentence-
BERT, improve on n-gram metrics, but still have a
weak-to-moderate correlation (Haque et al., 2022;
Mastropaolo et al., 2024). One trained metric ex-
ists, SIDE, and improves slightly over embedding
methods (Mastropaolo et al., 2024).

Despite these findings, research still relies on n-
gram metrics for evaluation. Of ten new code sum-
marisation papers in 2024 (Nguyen et al., 2024b;
Su and McMillan, 2024; Su et al., 2024; Zhao et al.,
2024; Li et al., 2024; Pan et al., 2024; Sun et al.,
2024; Ahmed et al., 2024; Cai et al., 2024; Mao
et al., 2024), six used only n-gram metrics, three
used n-gram metrics and embedding-based metrics,
and one only used human evaluation.

Human Evaluation Datasets We focus on two
datasets that were collected specifically for code
summarisation metric evaluation (Roy et al., 2021;
Haque et al., 2022). We also draw data from papers
that proposed new code summarisation methods
and asked people to evaluate specific aspects of
quality (Gao et al., 2023; Su et al., 2024). Those
results are mentioned in analysis and included in
Appendix A due to space constraints.

LLM-prompting based NLG Evaluation
Prompting has been successfully used to evaluate
other forms of Natural Language Generation, e.g.,
for text summarisation and dialogue generation
(Liu et al., 2023), and machine translation (Kocmi
and Federmann, 2023). We observe some key
differences between our results and other NLG
work. We achieve equally strong results without
a reference, but Qian et al. (2024) and Huang
et al. (2024) investigate different prompting
techniques and find that the reference summary is
very beneficial. We also find that our approach
consistently improves over a trained method, while
trained models are still the most effective for
MT (Anugraha et al., 2024; Freitag et al., 2024),
probably because of the larger and higher quality
datasets for metric development in MT.

There has also been considerable work evaluat-
ing the potential biases of LLM evaluators (Wu and
Aji, 2023; Zheng et al., 2024; Koo et al., 2024),
finding evidence that LLMs tend to evaluate their
own outputs more highly and favour longer re-
sponses. We investigate this issue in Section 6.1.

Reference-Free Metrics We introduce the first
reference-free approach for code summarisation
evaluation, but there is significant prior work for

other tasks (Rei et al., 2021; Scialom et al., 2021).
These often have better correlations with human
evaluations than equivalent reference-based met-
rics. However, Deutsch et al. (2022) argue that
reference-free metrics are essentially creating their
own pseudo-references, and so are constrained
by their own generation ability. We agree that
reference-free metrics are not a complete substitute,
but for code summarisation they have the additional
benefit that they could be used to flag low quality
summaries within an existing code base.

3 Task

Code summarisation is the task of generating a
summary of a code snippet. We are proposing new
metrics for this task. The aim of the metric is to
output a score that captures the overall quality of
the summary, so that it can provide a broad indi-
cator of the model’s performance. These metrics
have access to the code, the generated summary,
and a human-written reference summary. However,
we will also consider a variant of our approach that
does not use the reference. We measure the quality
of the metric by looking at how well it correlates
with human ratings of overall score and similarity.

4 New Metric: Ask LLM Directly

Our metric is simple: ask an LLM to give the sum-
mary a rating, just like asking a human. One benefit
is that this approach can consider the relevant code
as well as the reference summary. In contrast, n-
gram and embedding based metrics only measure
the similarity between the generated summary and
a reference summary. Our metric can also work
without a reference. We include this variant in
our results and note that (1) it is useful when high-
quality references are not available, and (2) it could
be used outside of model evaluation, for example to
identify low quality human-written documentation.

To develop this metric we created a prompt by
systematically testing different variations using es-
tablished techniques such as chain-of-thought rea-
soning, role-based prompting and varying the prob-
lem description with Claude. Figure 4 shows the
final prompt used, selected based on correlation
with human ratings on a subset of the data. In the
reference free case, the "Reference Summary" line
is left out.

We also considered question-answering based
prompts, where we focused on whether the LLM
was able to answer questions about the reference

You are a professional software engineer.
Evaluate the statement by responding ‘Strongly
agree’, ‘Somewhat agree’, ‘Somewhat disagree’
or ‘Strongly disagree’. Independent of other
factors, I feel the new summary is accurate.

Reference summary: {Reference Summary}
Function:{Original Function}

Generated summary: {Generated Summary}

What are the steps you would take to evaluate
this statement? Show your steps and then
provide an evaluation (Strongly agree, Somewhat
agree, Somewhat disagree or Strongly disagree).

Figure 1: Ask LLM Directly Final Prompt

using information from the generated summary.
For further details, see Appendix E.

S Experiments

5.1 Datasets

We use two datasets that were created for metric
evaluation. We aim to produce a single score, and
so the most relevant data is Roy et al. (2021)’s
Overall Score, a direct assessment of the overall
quality of the summary. We also consider Haque
et al. (2022)’s Similarity, which measures the simi-
larity with the reference, but that does not account
for a high quality but different summary. To avoid
overfitting, during development we used a subset
of the data. For the final results we used all of
the data with 10-fold cross-validation. Note, while
these are public datasets, the human evaluations
are stored separately from the text being judged, so
it is unlikely that LLM pretraining is causing data
contamination.

In analysis, we also consider human evaluations
of Adequacy that were collected in the process of
evaluating a code summarisation system (Gao et al.,
2023). Additional details are in Appendix D.2 and
results comparing with specific aspects of quality
are in Appendix A.

We release a version of all the datasets refor-
matted to be consistent, and with all of the same
information.! This was somewhat involved as some
datasets did not directly include the code. Fortu-
nately, they did indicate their code and documenta-
tion source, and so we could go back to that source
and match the summary to find the code.

5.2 Measuring Correlation

As in previous papers which evaluate code sum-
marisation metrics (Roy et al., 2021; Haque et al.,

"Link to github repository

Overall Score Similarity

Metrics (Roy et al.) (Haque et al.)
BLEU-A 0.28 0.55
n-grams METEOR 0.31 0.75
ROUGE-L 0.21 0.47
trained{ SIDE 0.38 0.32
SentenceBERT 0.36 0.76
embedding< gte-base-en 0.38 0.80
voyage-code-3 0.43 0.81
ask-OLMo 0.35 0.49
ask-OLMo-no-ref 0.36 0.61
ask-LLM< ask-gpt 0.42 0.48
ask-claude 0.47 0.57
ask-claude-no-ref 0.46 0.61

Table 1: Spearman’s Correlation with Human Ratings
for Overall Score and Similarity

2022; Mastropaolo et al., 2024), we aim to max-
imise correlation with human evaluation scores.
We follow Haque et al. (2022)’s methodology: (1)
when there are multiple human scores for a sample,
we compare with the mean to reduce the impact
of noise from disagreement, and (2) we use Spear-
man’s Rank correlation for each metric because,
unlike Pearson’s correlation, it does not assume a
normal distribution. We use a permutation test for
significance testing, see Appendix B for details.

5.3 Maetrics

We consider the most commonly used metrics
(BLEU, METEOR and ROUGE-L), the best met-
rics according to prior work (SIDE and Sentence-
BERT), two new embeddings (gite-base-en, and
coyage-code-3), and our own metric (ask-LLM and
ask-LLM-no-ref), where LLM is the name of the
model that is queried, and no-ref indicates the vari-
ant in which no reference summary is provided in
the prompt. When measuring results, we only run
each approach once. It is likely that there would
be some variation each time these systems are run,
but in our experience varying the prompt (see Ap-
pendix E) results were consistent and so they are
likely to be consistent across runs with a single
prompt as well. For further details, see Appendix C.
Metrics that are evaluated here for the first time are
in italics in Table 1.

6 Results

Table 1 shows correlations with Overall Score and
Similarity to the reference summary. Below, we
note several key results.

N-gram metrics are not as effective. For Over-
all Score, the trained method (SIDE), the best

https://github.com/jaderrrr/qa-code-sum-metric

embedding-based approach (voyage-code-3) and
the best ask-LLLM approach (ask-claude) outper-
form the best n-gram metric (BLEU-A). All of
these improvements are statistically significant ac-
cording to a permutation test at below the 0.01
level®. For Similarity, we find a different pattern,
with SIDE performing worst, and the other three
types of metrics in similar ranges. We find no sta-
tistically significant difference between the best
n-gram based metric (METEOR) and either the
best embedding-based metric (voyage-code-3) or
the best ask-LLLM metric (ask-claude-no-ref).

Embedding metrics are comparable to ask-LLM
metrics. On Overall Score, the best embedding-
based approach (voyage-code-3) and the best ask-
LLM approach (ask-claude) are not statistically
significantly different. For Similarity they are, with
the embeddings being better, but we would expect
embeddings to be better suited to that task. Note
in particular that a summary may be good even
though it isn’t similar to the reference, and so a
metric that focuses on similarity will sometimes
struggle. There is also the issue that Similarity is
only a measure of quality if the reference is high
quality. In code summarisation datasets, nearly all
reference summaries are stripped from Github with
limited manual oversight. This introduces many
quality issues.

Newer embeddings are better. For both Overall
Score and Similarity, the newest embedding based
metric, using voyage-code-3, improves on the
previous state-of-the-art embeddings-based metric
SentenceBERT. This is good news, since it indi-
cates that continued progress on embedding meth-
ods is likely to continue to provide improvements
here. One key difference between these approaches
is cost, which will be discussed below.

ask-LLM-no-ref is just as effective. The per-
formance of the Ask-LLM-Directly style metrics
is stable regardless of whether the reference sum-
mary is provided, with no statistically significant
difference between the two.

Different LLMs may perform differently. The
choice of model (e.g. OLMo vs Claude) does
lead to a significant difference. However, we used
Claude when fine-tuning our prompt, making it an
unfair comparison.

2Specific p-values are included in Appendix B

Gao et al. - Java (Train)

Fluent
0.44

Concise
0.38

Quality Dimensions Adequate

Accuracy: “Independent 0.59
of other factors, I feel the
new summary is accurate”

Adequacy: “The new sum- 0.60 0.35 0.37
mary contains all of the

important information re-

quired for understanding

the method”

Conciseness: “The new 0.59 0.35 0.41
summary only contains nec-
essary information.”

Table 2: Test of Different Quality Dimensions

6.1 Analysis

To understand the strengths and weaknesses of our
approach, we conducted several additional experi-
ments.

Ask-LLM method can’t easily be adapted to
different quality dimensions Table 2 shows the
results of our attempts to get the LLM to focus on
specific aspects of quality. We see very little vari-
ation, with the scores continuing to mainly reflect
Adequacy. Looking at specific examples, we found
two issues. First, mentioning unrelated issues, e.g.,
for conciseness it produced: “The generated sum-
mary contains incorrect information and does not
accurately summarize the function.”. Second, in-
consistency, e.g., for conciseness it produced “...the
lack of specificity makes the generated summary
less informative ...”. We did not explore this further
since our focus is on a single metric that aligns
with overall quality. However, note that full results
in Appendix A show that despite these issues, cor-
relation with specific aspects was better than prior
methods.

Ask-LLM is Not Sensitive to Length Many
studies suggest that LLM evaluators are biased to-
wards longer outputs (Wu and Aji, 2023; Zheng
et al., 2024; Koo et al., 2024). However, for our
metric, looking at the scores assigned by different
metrics and the number of characters in the gener-
ated summary, in most cases we find the correlation
is close to zero. For full results, see Appendix G.

Model Sensitivity There is a risk that an LLM
will prefer its own output. We considered the rela-
tive ranking of each model according to each metric.
Surprisingly, ask-gpt rates the models that use GPT-
4 as the worst overall. None of the data we had used
Claude and so we generated our own summaries

Metrics Cost per Query (USD)

voyage-code-3 0.000002
ask-OLMo/ask-OLMo-no-ref 0.011
ask-gpt 0.012
ask-claude/ask-claude-no-ref 0.024

Table 3: Metric Costs

with Claude and valuated them. While Claude did
find some issues within summaries it had gener-
ated, in 92.7% of cases it gives its summaries the
highest possible rating. For full results, see Ap-
pendices F and H. Based on this, we recommend
using these metrics in combination with embedding
based methods.

Costs Table 3 shows the cost per summary of
each of the metrics. These are API costs for com-
mercial tools and compute costs open source model
OLMo-2 (we used an A100). These results show
that these approaches are clearly much cheaper
than running human evaluations, but still more ex-
pensive than metrics which can be run locally, e.g.
gte-base-en, Sentence-BERT and n-gram methods.

7 Conclusion

We introduce a simple LLM-based evaluation met-
ric and evaluate it on the standard code summarisa-
tion datasets. Our approach is consistently better
than prior metrics. We describe a reference-free
variant of our approach, which also performs well,
and could be used in a variety of ways. We rec-
ommend that future work uses a combination of
embedding and Ask-LLM metrics for development,
and turn to human raters for final evaluation. That
will enabler faster development while maintaining
reliable evaluation.

Limitations

Languages Evaluated Against Due to the lack
of available data, it was not possible to get any
human evaluation data from programming lan-
guages apart from Python and Java. Of those,
overall scores are only available for the Java-based
datasets, though in Appendix A we do include re-
sults for other scores on the Python datasets. Met-
rics that work for one language may not be as ef-
fective for another. This means that our results may
not apply as well across different languages that
we weren’t able to evaluate against. In particular,
our method may be less effective on languages that
are less widely used and so less well understood
by LLMs. However, by definition, rare langauges

are not as common as common ones, and so our
method will be useful for the vast majority of de-
velopers.

Reliance on Intrinsic Human Assessment All
of the studies we use ask raters to assess the qual-
ity of the summary directly, rather than assess the
impact of the different summaries on downstream
tasks. As such, the ratings may not be optimis-
ing for summaries that aid development but rather
developer perception, which while likely a good
proxy, will never be perfect. The reference sum-
maries are also human-written and vary consider-
ably in quality. For reference-based methods, that
could be misleading, as being similar to the refer-
ence may not indicate a summary is good.

Prompting Approaches Tested We were not
able to run every prompt variation for every model,
GPT and OLMo generally seem to perform worse
here but this could be because the prompts were
decided using Claude, but due to budget restraints
we only tested the best performing prompt from
initial testing on Claude.

Al Assistance Statement

ChatGPT was used to ask LaTeX questions to assist
with the formatting of this paper.

Acknowledgments

This material is partially funded by an unrestricted
gift from Google, and by the Australian Research
Council through a Discovery Early Career Re-
searcher Award.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998-5007, On-
line. Association for Computational Linguistics.

Toufique Ahmed, Kunal Suresh Pai, Premkumar De-
vanbu, and Earl Barr. 2024. Automatic semantic
augmentation of language model prompts (for code
summarization). In Proceedings of the IEEE/ACM
46th International Conference on Software Engineer-
ing, ICSE *24, New York, NY, USA. Association for
Computing Machinery.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2019. code2seq: Generating sequences from
structured representations of code. In International
Conference on Learning Representations.

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.1145/3597503.3639183
https://doi.org/10.1145/3597503.3639183
https://doi.org/10.1145/3597503.3639183
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX

David Anugraha, Garry Kuwanto, Lucky Susanto,
Derry Tanti Wijaya, and Genta Winata. 2024.
MetaMetrics-MT: Tuning meta-metrics for machine
translation via human preference calibration. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, pages 459—469, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Aakash Bansal, Robert Wallace, Zachary Karas,
Ningzhi Tang, Yu Huang, Toby Jia-Jun Li, and Collin
McMillan. 2024. Programmer visual attention dur-

ing context-aware code summarization. Preprint,
arXiv:2405.18573.

Yufan Cai, Yun Lin, Chenyan Liu, Jinglian Wu, Yi-
fan Zhang, Yiming Liu, Yeyun Gong, and Jin Song
Dong. 2024. On-the-fly adapting code summariza-
tion on trainable cost-effective language models. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Sergio Cozzetti B. de Souza, Nicolas Anquetil, and
Kathia M. de Oliveira. 2006. Which documentation
for software maintenance? Journal of the Brazilian
Computer Society, 12(3):31-44.

Daniel Deutsch, Tania Bedrax-Weiss, and Dan Roth.
2021a. Towards question-answering as an automatic
metric for evaluating the content quality of a sum-
mary. Transactions of the Association for Computa-
tional Linguistics, 9:774-789.

Daniel Deutsch, Rotem Dror, and Dan Roth. 2021b. A
statistical analysis of summarization evaluation met-
rics using resampling methods. Transactions of the

Association for Computational Linguistics, 9:1132—
1146.

Daniel Deutsch, Rotem Dror, and Dan Roth. 2022. On
the limitations of reference-free evaluations of gen-
erated text. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10960-10977, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, and
Caiming Xiong. 2022. QAFactEval: Improved QA-
based factual consistency evaluation for summariza-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 2587-2601, Seattle, United States. Asso-
ciation for Computational Linguistics.

Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-
Kiu Lo, Eleftherios Avramidis, Ricardo Rei, Brian

Thompson, Frederic Blain, Tom Kocmi, Jiayi Wang,
David Ifeoluwa Adelani, Marianna Buchicchio,
Chrysoula Zerva, and Alon Lavie. 2024. Are LLMs
breaking MT metrics? Results of the WMT24 met-
rics shared task. In Proceedings of the Ninth Confer-
ence on Machine Translation, pages 47-81, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng,
Lunyiu Nie, Xin Xia, and Michael Lyu. 2023. Code
structure—guided transformer for source code sum-
marization. ACM Trans. Softw. Eng. Methodol.,
32(1):Article 23.

Sakib Haque, Zachary Eberhart, Aakash Bansal, and
Collin McMillan. 2022. Semantic similarity met-
rics for evaluating source code summarization. In
Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, page 36—47.
Association for Computing Machinery.

Sakib Haque, Alexander LeClair, Lingfei Wu, and
Collin McMillan. 2020. Improved automatic summa-
rization of subroutines via attention to file context.
In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR °20, page
300-310, New York, NY, USA. Association for Com-
puting Machinery.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. 2020. Global
relational models of source code. In International
Conference on Learning Representations.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. 2018a. Deep
code comment generation. In 2018 IEEE/ACM 26th
International Conference on Program Comprehen-
sion (ICPC), pages 200-20010.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred api knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 2269-2275. Interna-
tional Joint Conferences on Atrtificial Intelligence
Organization.

Xu Huang, Zhirui Zhang, Xiang Geng, Yichao Du, Ji-
ajun Chen, and Shujian Huang. 2024. Lost in the
source language: How large language models evalu-
ate the quality of machine translation. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 3546-3562, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Tom Kocmi and Christian Federmann. 2023. Large lan-
guage models are state-of-the-art evaluators of trans-
lation quality. In Proceedings of the 24th Annual
Conference of the European Association for Machine
Translation, pages 193-203, Tampere, Finland. Euro-
pean Association for Machine Translation.

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park,
Zae Myung Kim, and Dongyeop Kang. 2024. Bench-
marking cognitive biases in large language models as

https://doi.org/10.18653/v1/2024.wmt-1.32
https://doi.org/10.18653/v1/2024.wmt-1.32
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/2405.18573
https://arxiv.org/abs/2405.18573
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b16e6de5fbbdcb2df237aa66b302bc17-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b16e6de5fbbdcb2df237aa66b302bc17-Abstract-Conference.html
https://doi.org/10.1007/BF03194494
https://doi.org/10.1007/BF03194494
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00397
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.18653/v1/2022.emnlp-main.753
https://doi.org/10.18653/v1/2022.emnlp-main.753
https://doi.org/10.18653/v1/2022.emnlp-main.753
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.1145/3522674
https://doi.org/10.1145/3522674
https://doi.org/10.1145/3522674
https://doi.org/10.1145/3524610.3527909
https://doi.org/10.1145/3524610.3527909
https://doi.org/10.1145/3379597.3387449
https://doi.org/10.1145/3379597.3387449
https://api.semanticscholar.org/CorpusID:213352113
https://api.semanticscholar.org/CorpusID:213352113
https://xin-xia.github.io/publication/icpc182.pdf
https://xin-xia.github.io/publication/icpc182.pdf
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.18653/v1/2024.findings-acl.211
https://doi.org/10.18653/v1/2024.findings-acl.211
https://doi.org/10.18653/v1/2024.findings-acl.211
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2024.findings-acl.29
https://aclanthology.org/2024.findings-acl.29

evaluators. In Findings of the Association for Com-
putational Linguistics ACL 2024, pages 517-545,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of the
28th International Conference on Program Compre-
hension, page 184-195. Association for Computing
Machinery.

Alexander LeClair, Siyuan Jiang, and Collin McMil-
lan. 2019. A neural model for generating natural
language summaries of program subroutines. In Pro-
ceedings of the 41st International Conference on Soft-
ware Engineering, page 795-806. IEEE Press.

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Chaowei
Liu, Shuai Wang, Daoyuan Wu, Cuiyun Gao, and
Yang Liu. 2024. On extracting specialized code abili-
ties from large language models: A feasibility study.
In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE *24, New
York, NY, USA. Association for Computing Machin-
ery.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-Eval:
NLG evaluation using GPT-4 with better human
alignment. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2511-2522, Singapore. Association for
Computational Linguistics.

Yingjie Mao, Xiao Li, Zongwei Li, and Wenkai Li. 2024.
Automated smart contract summarization via LLMs.
ArXiv, abs/2402.04863.

A. Mastropaolo, M. Ciniselli, M. Di Penta, and
G. Bavota. 2024. Evaluating code summarization
techniques: A new metric and an empirical charac-
terization. In 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE), pages
1002-1002.

Vishal Misra, Jakku Sai Krupa Reddy, and Sridhar Chi-
malakonda. 2020. Is there a correlation between code
comments and issues? An exploratory study. In SAC
"20: Proceedings of the 35th Annual ACM Symposium
on Applied Computing.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014-2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

Minh Nguyen, Nghi Bui, Truong Son Hy, Long Tran-
Thanh, and Tien Nguyen. 2024a. HierarchyNet:

Learning to summarize source code with heteroge-
neous representations. In Findings of the Association
for Computational Linguistics: EACL 2024, pages
2355-2367, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Minh Nguyen, Nghi Bui, Truong Son Hy, Long Tran-
Thanh, and Tien Nguyen. 2024b. HierarchyNet:
Learning to summarize source code with heteroge-
neous representations. In Findings of the Association
for Computational Linguistics: EACL 2024, pages
2355-2367, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Xinglu Pan, Chenxiao Liu, Yanzhen Zou, Xianlin Zhao,
and Bing Xie. 2024. Context-focused prompt tun-
ing pre-trained code models to improve code sum-
marization. In 2024 IEEE 48th Annual Computers,
Software, and Applications Conference (COMPSAC),
pages 1344—1349.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Shenbin Qian, Archchana Sindhujan, Minnie Kabra,
Diptesh Kanojia, Constantin Orasan, Tharindu Ranas-
inghe, and Fred Blain. 2024. What do large lan-
guage models need for machine translation evalua-
tion? In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 3660-3674, Miami, Florida, USA. Association
for Computational Linguistics.

Ricardo Rei, Ana C Farinha, Chrysoula Zerva, Daan
van Stigt, Craig Stewart, Pedro Ramos, Taisiya
Glushkova, André F. T. Martins, and Alon Lavie.
2021. Are references really needed? unbabel-IST
2021 submission for the metrics shared task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 1030-1040, Online. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova.
2021. Reassessing automatic evaluation metrics for
code summarization tasks. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, page 1105-1116. Associa-
tion for Computing Machinery.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, Jacopo Staiano, Alex Wang,

https://aclanthology.org/2024.findings-acl.29
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/icse.2019.00087
https://doi.org/10.1109/icse.2019.00087
https://doi.org/10.1145/3597503.3639091
https://doi.org/10.1145/3597503.3639091
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://api.semanticscholar.org/CorpusID:267523444
http://doi.ieeecomputersociety.org/
http://doi.ieeecomputersociety.org/
http://doi.ieeecomputersociety.org/
https://doi.org/10.1145/3341105.3374009
https://doi.org/10.1145/3341105.3374009
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://aclanthology.org/2024.findings-eacl.156
https://aclanthology.org/2024.findings-eacl.156
https://aclanthology.org/2024.findings-eacl.156
https://aclanthology.org/2024.findings-eacl.156
https://aclanthology.org/2024.findings-eacl.156
https://aclanthology.org/2024.findings-eacl.156
https://doi.org/10.1109/COMPSAC61105.2024.00177
https://doi.org/10.1109/COMPSAC61105.2024.00177
https://doi.org/10.1109/COMPSAC61105.2024.00177
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://doi.org/10.18653/v1/2024.emnlp-main.214
https://aclanthology.org/2021.wmt-1.111
https://aclanthology.org/2021.wmt-1.111
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3468264.3468588
https://doi.org/10.1145/3468264.3468588

and Patrick Gallinari. 2021. QuestEval: Summariza-
tion asks for fact-based evaluation. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6594-6604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart,
W. Weimer, K. Leach, and Y. Huang. 2020. A human
study of comprehension and code summarization. In
2020 IEEE/ACM 28th International Conference on
Program Comprehension (ICPC), pages 01-12.

Chia-Yi Su, Aakash Bansal, Yu Huang, Toby Jia-Jun
Li, and Collin McMillan. 2024. Context-aware code
summary generation. Preprint, arXiv:2408.09006.

Chia-Yi Su, Aakash Bansal, Vijayanta Jain, Sepideh
Ghanavati, and Collin McMillan. 2023. A language
model of Java methods with train/test deduplication.
In Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2023, page 2152-2156, New York, NY, USA. Asso-
ciation for Computing Machinery.

Chia-Yi Su and Collin McMillan. 2024. Distilled GPT
for source code summarization. Automated Software
Engineering, 31(1):22.

Weisong Sun, Chunrong Fang, Yuchen Chen, Quanjun
Zhang, Guanhong Tao, Yudu You, Tingxu Han, Yifei
Ge, Yuling Hu, Bin Luo, and Zhenyu Chen. 2024. An
extractive-and-abstractive framework for source code
summarization. ACM Trans. Softw. Eng. Methodol.,
33(3).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

VoyageAl. 2024. voyage-code-3: more accurate code
retrieval with lower dimensional, quantized embed-
dings. https://blog.voyageai.com/2024/12/04
/voyage-code-3/#:~:text=voyage%2Dcode%2D3
%20supports%2@much,Matryoshka%20embeddin
gs. Accessed: 2024-12-10.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of
the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 18, page
397-407, New York, NY, USA. Association for Com-
puting Machinery.

Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.
Asking and answering questions to evaluate the fac-
tual consistency of summaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5008-5020, Online. Asso-
ciation for Computational Linguistics.

Minghao Wu and Alham Fikri Aji. 2023. Style over sub-
stance: Evaluation biases for large language models.
Preprint, arXiv:2307.03025.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong
Feng, Michael Witbrock, and Vadim Sheinin.
2018. Graph2seq: Graph to sequence learning
with attention-based neural networks. Preprint,
arXiv:1804.00823.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie,
Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang,
Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie
Li, and Min Zhang. 2024. mGTE: Generalized long-
context text representation and reranking models for
multilingual text retrieval. CoRR, abs/2407.19669.

Junjie Zhao, Xiang Chen, Guang Yang, and Yiheng
Shen. 2024. Automatic smart contract comment gen-
eration via large language models and in-context
learning. Information and Software Technology,
168:107405.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2024. Judging
LLM-as-a-judge with MT-bench and Chatbot arena.
In Proceedings of the 37th International Conference
on Neural Information Processing Systems, NIPS °23,
Red Hook, NY, USA. Curran Associates Inc.

Daniel Ziigner, Tobias Kirschstein, Michele Catasta,
Jure Leskovec, and Stephan Giinnemann. 2021.
Language-agnostic representation learning of source
code from structure and context. In International
Conference on Learning Representations.

https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.1145/3387904.3389258
https://doi.org/10.1145/3387904.3389258
https://arxiv.org/abs/2408.09006
https://arxiv.org/abs/2408.09006
https://doi.org/10.1145/3611643.3613090
https://doi.org/10.1145/3611643.3613090
https://doi.org/10.1007/s10515-024-00421-4
https://doi.org/10.1007/s10515-024-00421-4
https://doi.org/10.1145/3632742
https://doi.org/10.1145/3632742
https://doi.org/10.1145/3632742
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://blog.voyageai.com/2024/12/04/voyage-code-3/#:~:text=voyage%2Dcode%2D3%20supports%20much,Matryoshka%20embeddings.
https://blog.voyageai.com/2024/12/04/voyage-code-3/#:~:text=voyage%2Dcode%2D3%20supports%20much,Matryoshka%20embeddings.
https://blog.voyageai.com/2024/12/04/voyage-code-3/#:~:text=voyage%2Dcode%2D3%20supports%20much,Matryoshka%20embeddings.
https://blog.voyageai.com/2024/12/04/voyage-code-3/#:~:text=voyage%2Dcode%2D3%20supports%20much,Matryoshka%20embeddings.
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450
https://arxiv.org/abs/2307.03025
https://arxiv.org/abs/2307.03025
https://arxiv.org/abs/1804.00823
https://arxiv.org/abs/1804.00823
https://doi.org/10.48550/arXiv.2407.19669
https://doi.org/10.48550/arXiv.2407.19669
https://doi.org/10.48550/arXiv.2407.19669
https://doi.org/10.1016/j.infsof.2024.107405
https://doi.org/10.1016/j.infsof.2024.107405
https://doi.org/10.1016/j.infsof.2024.107405
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://iclr.cc/virtual/2021/poster/2838
https://iclr.cc/virtual/2021/poster/2838

A Other Aspects of Quality

While we focus on aligning with overall quality, we
also look at how well these metrics align with rat-
ings of the summary content and style. We find that
generally, all metrics, including the new baselines
we introduce, tend to align better with the content
factors of accuracy and adequacy than the style fac-
tors of conciseness and fluency. In this section, we
did not conduct significance tests since this is not
our primary objective, but rather intended to just
provide supplementary analysis.

Content Ratings The content (how accurate and
how adequate is the information provided), is one
of the most important factors in determining overall
summary quality according to human raters. In the
Haque et al. (2022) dataset, Content Adequacy had
the highest correlation with Overall Score (Spear-
man’s correlation of 0.83). In contrast, style factors
like conciseness and fluency had correlations of
0.60 and 0.54 respectively. In Table 4, we can see
the overall results for these content based factors
across three different datasets.

Here, the Ask-LLM-Directly approaches with
Claude consistently perform better than existing
metrics. One possible cause of this difference is
issues with reference summary quality. Figure 2
shows how metric performance varies based on the
quality of the reference summary in the Haque et al.
(2022) dataset. While all of the metrics perform
similarly when the references are medium to high
quality, performance drops off significantly for all
but the ask-LLM metrics when reference quality
is low. One explanation could be that our LLM
metrics have access to the code, providing a signal
that is independent of the poor quality reference
summaries. Another explanation could be that the
n-gram and embedding metrics are focused on sim-
ilarity, and in this case, high similarity is not an
indicator of quality.

Summary Style Ratings Table 5 shows the cor-
relation with Fluency and Conciseness, which are
in general much lower than the correlations with
both the overall ratings and the content ratings by
around 0.15, which suggests that all of the metrics
are prioritising summary content over style when
rating. The overall rankings of the metrics remains
stable, which means the new improvements in cor-
relation with overall ratings and correlation with ad-
equacy and accuracy are likely not to be coming at
the expense of evaluating conciseness and fluency.

o e 9 o
N w » n

Spearman's Correlation
o
=

0.0
Good Medium Bad
Reference Quality

3 ask-LLM [embedding [trained [n-gram

Figure 2: Correlation with Adequacy by Reference
Quality on the Haque et al. dataset

As metrics continue to improve into the future, it
may become useful to develop metrics for the qual-
ity factors individually. We attempted to do this by
changing the prompt with the Ask-LLM-Directly
technique, but we found it was surprisingly diffi-
cult to override the LLM’s internal representation
of overall summary quality by prompting.

Our Metrics Are Effective Across Programming
Languages Gao et al. (2023)’s data includes both
Java and Python. Comparing them in Tables 4 and
5, we find that our new metrics are fairly stable
across languages, while BLEU-A and SIDE are
worse on Python. For SIDE, this is probably be-
cause it was trained only on Java. This flexibility
is a strength of the baselines we define.

Correlation with Informativeness The results
for the final dataset we included, the Su et al. (2024)
dataset, are in Table 6. It differs from the other
datasets we used in a few ways: it includes evalu-
ations of LLM-generated summaries, it evaluates
only on the ‘informativeness’ of the summary, and
all of the references were individually written and
validated as part of another study. Here we see that
SIDE actually outperforms all other metrics, but the
other commonly used metrics such as the n-gram
metrics and the SentenceBERT embeddings-based
metric perform particularly poorly, with METEOR
even giving a negative correlation. The new em-
beddings metrics and the LLM-based metrics we
introduce both perform similarly, but the correla-
tion is weak-to-moderate overall. It is clear that this
data and/or the human evaluations are measuring
something quite different from the other aspects
we consider above. We believe this is because the
reference summaries were written with the intent
to explain the role of a function in a larger project,
rather than explaining what it does.

Content

Adequacy Adequacy

Adequacy Adequacy

Accuracy (Java) (Python)

Metrics (Roy et al.) (Haque et al.) (Haque et al.) (Gao et al.) (Gao et al.)
BLEU-A 0.27 0.37 0.33 0.48 0.27
n-gram{ METEOR 0.31 0.45 0.47 0.49 0.44
ROUGE-L 0.20 0.33 0.29 0.29 0.32
trained{ SIDE 0.40 0.36 0.37 0.26 0.10
SentenceBERT 0.36 0.47 0.52 0.56 0.41
embedding< gte-base-en 0.39 0.52 0.55 0.57 0.46
voyage-code-3 0.44 0.58 0.62 0.59 0.49
ask-OLMo 0.37 0.50 0.58 0.50 0.49
ask-OLMo-no-ref ~ 0.38 0.55 0.59 0.45 0.50
ask-LLM<{ ask-gpt 0.41 0.55 0.60 0.52 0.49
ask-claude 0.47 0.54 0.62 0.61 0.62
ask-claude-no-ref ~ 0.48 0.60 0.69 0.55 0.58

Table 4: Spearman’s Correlation with Human Ratings for Adequacy and Accuracy

Conciseness Fluency
(Java) (Python) (Java) (Python)

Metrics (Roy et al.) (Haque et al.) (Gao et al.) (Gao et al.) (Roy et al.) (Gao et al.) (Gao et al.)
BLEU-A 0.15 0.16 0.20 0.10 0.13 0.32 0.12
n-gramq METEOR 0.17 0.27 0.19 0.23 0.15 0.29 0.23
ROUGE-L 0.11 0.13 0.13 0.20 0.06 0.22 0.21
trained{ SIDE 0.30 0.22 0.11 0.00 0.21 0.13 -0.01
SentenceBERT 0.22 0.26 0.16 0.20 0.17 0.26 0.18
embedding} gte-base-en 0.25 0.33 0.21 0.25 0.18 0.30 0.27
voyage-code-3 0.29 0.37 0.16 0.25 0.22 0.27 0.26
ask-OLMo 0.25 0.40 0.33 0.32 0.17 0.37 0.32
ask-OLMo-no-ref ~ 0.28 0.41 0.31 0.33 0.22 0.31 0.33
ask-LLM< ask-gpt 0.29 0.42 0.32 0.28 0.24 0.34 0.31
ask-claude 0.33 0.42 0.28 0.35 0.26 0.38 0.38
ask-claude-no-ref 0.36 0.46 0.25 0.33 0.25 0.32 0.36

Table 5: Spearman’s Correlation with Human Ratings for Conciseness and Fluency

Informativeness

Metrics (Suetal.)
BLEU-A 0.07
n-gram{ METEOR -0.09
ROUGE-L 0.22
trained{ SIDE 0.45
SentenceBERT 0.14
embedding] gte-base-en 0.35
voyage-code-3 0.34
ask-OLMo 0.30
ask-OLMo-no-ref 0.29
ask-LLM< ask-gpt 0.26
ask-claude 0.23

ask-claude-no-ref 0.28

Table 6: Spearman’s Correlation with Human Ratings
for Informativeness

A.1 Confidence Intervals

We measured confidence intervals and statistical
significance by applying the methods from Deutsch
et al. (2021Db). Statistical significance has already
been included in discussion above. For confidence
intervals, their approach only applies when there

are multiple systems, and so we can only use it
for two of the datasets (Gao et al., 2023; Su et al.,
2024). Due to the small size of these two datasets,
the intervals were large. Note that even with broad
confidence intervals, results can be statistically sig-
nificantly different?.

B Significance Testing

Confidence Intervals We follow the BOOT-
BoTH* method from Deutsch et al. (2021b) to
calculate confidence intervals, which has been de-
veloped specifically for text summarisation metric
evaluation. It accounts for human rating data not
falling into the normal distribution as well as the
fact that we have summaries generated by different
models for the same document (code snippet). This
approach requires the dataset to have generated
summaries from different systems, which meant

3Also note that we only considered significance on the
datasets with Overall Score and Similarity, and those datasets
are not amenable to this CI calculation method.

4Using the implementation from nlpstats

https://github.com/danieldeutsch/nlpstats

that it was not possible to calculate confidence in-
tervals for the Haque et al. (2022) dataset (they
only test one system) and the Roy et al. (2021)
dataset (which system generated each summary is
not included in their publicly available data).

Permutation Tests While Deutsch et al. (2021b)
also present code to run p-tests, we did not use their
implementation due to the limitation of requiring
generated summaries from different systems which
we need for two of our datasets. We implement the
test ourselves, sampling 10,000 times to approx-
imate the distribution. We apply the Bonferroni
correction, with 9 p-tests performed on each of the
Roy et al. (2021) and Haque et al. (2022) datasets.

P-values for the tests we ran are shown in Table 7.
P-values in bold are significant with p < 0.05 after
being adjusted with Bonferroni correction.

C Metrics Tested

BLEU (Papineni et al., 2002) We use the BLEU-
A variant, which is the average for the BLEU score
of 1-, 2-, 3- and 4-grams individually. Calculated
using HuggingFace’s evaluate package (https:
//huggingface.co/spaces/evaluate-metric/
bleu).

METEOR (Banerjee and Lavie, 2005) is also an
n-gram based metric, but gives credit to synonyms
and is more highly weighted towards recall. Cal-
culated using HuggingFace’s evaluate package
(https://huggingface.co/spaces/evaluate
-metric/meteor).

ROUGE-L (Lin, 2004) returns a score based on
the longest common subsequence of words in the
two summaries. Calculated using HuggingFace’s
evaluate package (https://huggingface.co/s
paces/evaluate-metric/rouge) - the ‘rougel’
statistic.

SIDE (Mastropaolo et al., 2024) uses contrastive
learning to train an evaluator model. We use the ex-
ample code provided in (Mastropaolo et al., 2024).
We used the models_with_hard_negatives ver-
sion of the model.

SentenceBERT (Reimers and Gurevych, 2019)
is a text embedding method. We apply it to the
generated summary and the reference, then cal-
culate cosine similarity. Computed cosine simi-
larity with stsb-roberta-large available from
HuggingFace sentence-transformers (https:

Generated: returns the label text for the given
element
Original Code with Reference Summary:

// removes namespace prefix from label text
public String getlLabelText(String xpath, String
siblingPath, String indexId) {
if (siblingPath != null && indexId != null) {
String nodeName = NamespaceRegistry.
stripNamespacePrefix (XPathUtils.getNodeName

(siblingPath));
return (nodeName + "_${" + indexId + "+1}");
} else {
String nodeName = NamespaceRegistry.

stripNamespacePrefix (XPathUtils.
getNodeName (normalizedXPath));
return nodeName;
}
3}

Human Ratings:

Similarity: [2, 2, 1]
Accuracy: [3, 4, 4]
Adequacy: [3, 4, 2]
Conciseness: [4, 4, 3]

Figure 3: Example from Roy et al. (Note: this is a
particularly short example)

//huggingface.co/sentence-transformers/
stsb-roberta-large).

Claude-3-Opus We used Claude-3-
Opus-20240229, currently available from
https://www.anthropic.com/api.

GPT-40 We used GPT-40-2024-05-13, currently
available from https://platform.openai.co
m/.

OLMo-2 We used OLMo-2-1124-13B-Instruct,
available from HuggingFace (https://huggingf
ace.co/allenai/OLMo-2-1124-13B-Instruc
t).

gte-base-en (Zhang et al., 2024) is an open-
source model which performs well on the Mas-
sive Text Embedding Benchmark (MTEB) (Muen-
nighoff et al., 2023) and is small enough to run
without a GPU. on a standard personal com-
puter. Score calculated with cosine similarity, us-
ing gte-base-en-v1.5 available on HuggingFace
(https://huggingface.co/Alibaba-NLP/gte
-base-en-v1.5).

voyage-code-3 (NVoyageAl, 2024) is a commer-
cial embedding model trained specifically for
code. Computed cosine similarity with VoyageAI’s
voyage-code-3 embedding model as of December
2024.

D Dataset Statistics

Figure 3 shows an example of code, a generated
summary, and a reference summary. At the bottom

https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/meteor
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/sentence-transformers/stsb-roberta-large
https://huggingface.co/sentence-transformers/stsb-roberta-large
https://huggingface.co/sentence-transformers/stsb-roberta-large
https://www.anthropic.com/api
https://platform.openai.com/
https://platform.openai.com/
https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct
https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct
https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct
https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5
https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5

Overall Score
(Roy et al., 2021)

Similarity
(Haque et al., 2022)

SIDE / best n-gram SIDE / BLEU SIDE / METEOR
0.0002 0.0001

SIDE / best embedding SIDE / voyage-code-3 SIDE / voyage-code-3
0.0445 0.0000

SIDE / best ask-LLM SIDE / ask-claude SIDE / ask-claude-no-ref
0.0030 0.0034

best embedding / worst embedding

voyage-code-3 / SentenceBERT
0.0000

voyage-code-3 / SentenceBERT
0.011

best embedding / best n-gram

voyage-code-3 / BLEU

voyage-code-3 / METEOR

0.0000 0.0593
best embedding / best ask-LLM voyage-code-3 / ask-claude ask-claude-no-ref / voyage-
code-3
0.1035 0.0001
best ask-LLM / worst ask-LLM ask-claude / ask-OLMo ask-claude-no-ref / ask-OLMo
0.0000 0.1344
best ask-LLM / best n-gram ask-claude / BLEU ask-claude-no-ref / METEOR
0.0000 0.0321

ask-claude / ask-claude-no-ref
0.6779

ask-claude / ask-claude-no-ref

ask-claude / ask-claude-no-ref
0.3585

Table 7: P-values for Overall Quality Scores

are human annotation of four aspects of quality for
the summary.

D.1 License Information

The Roy et al. dataset has been released under an
MIT license. The Github repositories for the Gao
et al. and Haque et al. datasets do not contain any
license information. The Su et al. datasets has
not yet been publicly released so they do not have
any license yet. Our use is compatible with the
intended use when it was provided.

D.2 Dataset Measures

Roy et al.
Disagree:

rate from Strongly Agree to Strongly

¢ Content Adequacy: The extent to which the
summary lacks information needed to under-
stand the code.

* Conciseness: The degree to which the sum-
mary contains unnecessary information.

* Fluency: The continuity or smoothness rate
in the generated summary.

¢ Overall Score: a Direct Assessment (DA)
score from 1-100 of the overall quality of the
summary.

Gao et al. also rate adequacy, conciseness and
fluency, with slightly different definitions from 1
(‘very dissatisfied’) to 5 (‘very satisfied’). These
are defined as:

* Adequacy: How much the functional mean-
ing of the code is preserved after summarisa-
tion.

* Conciseness: The ability to express the func-
tion of the code snippet without unnecessary
words.

* Fluency: The quality of the generated lan-
guage such as the correctness of grammar.

Haque et al. first show each rater either the ref-
erence or generated summary. They rate that sum-
mary on accuracy, adequacy and conciseness from
Strongly Disagree to Strongly Agree and then rate
similarity after seeing the other summary.

* Accuracy: Independent of other factors, I feel
the summary is accurate.

* Adequacy: The summary is missing impor-
tant information, and that can hinder the un-
derstanding of the method.

* Conciseness: The summary contains a lot of
unnecessary information.’

* Similarity: These two comments are similar.

Su et al. focus instead on how the method fits
within the entire project, rating the following
prompt from Strongly Agree to Strongly Disagree:

>Note that Adequacy and Conciseness are phrased nega-
tively, such that a Strongly Disagree rating is the most positive
response. For readability and consistency throughout this
paper these have been flipped so high agreement is positive.

 Informativeness: The summary contains in-
formation that helps to understand why the
method exists in the project.

D.3 Models Tested

Each dataset also includes ratings of summaries
generated by different models, which have different
characteristics based on the method of generation.

Roy et al. (2021) sample methods from the Fun-
com dataset (LeClair et al., 2019). They collect
ratings of the human-written reference summaries
as well as five other summarisation models, listed
below in order of human rater preference:

* CODE2SEQ (Alon et al.,, 2019) Encoder-
Decoder RNN which represents code as com-
positional paths over its AST.

* GRAPH2SEQ (Xu et al.,, 2018) Encoder-
Decoder RNN which represents code as a
graph.

* AST-ATTENDGRU-FC (Haque et al., 2020)
Encoder-Decoder RNN with three encoders,
one for the textual code data, one for the AST,
and one for the ‘file context’ - textual code
data from other methods in the same file.

* AST-ATTENDGRU (LeClair et al., 2019) Same
as AST-ATTENDGRU-FC but without the addi-
tional file context information.

¢ TRANSFORMER (Vaswani et al., 2017) The
original Transformer model with no modifica-
tions for code summarisation.

Unfortunately, the data available online for this
dataset does not include annotations which specify
which summary was produced by which model so
we are unable to analyse metric performance by
model on this particular dataset.

Gao et al. (2023) sample methods instead from
the TL-CodeSum dataset (Hu et al., 2018b) for the
Java data and from the Wan et al. (2018) dataset for
the Python data. They also select five different code
summarisation models, ordered below by human
rater preference on ‘adequacy’, but they do not
collect ratings of the reference summaries.

* SG-TRANS (Gao et al., 2023) Transformer
enhanced with structural information of the
input, a graph created based on both local
structures, e.g. if the tokens belong to the
same statement, and global structures, e.g. if
there a data flow between the tokens.

* GREAT (Hellendoorn et al., 2020)
Transformer-based model enhanced with
graph representations which encode control
flow and data flow relations.

e NEURALCODESUM (Ahmad et al., 2020)
Transformer with small modifications to at-
tention process for the code summarisation
task, with no AST or additional code structure
information.

e TRANSFORMER (Vaswani et al., 2017) The
original Transformer model with no modifica-
tions for code summarisation.

e CODETRANSFORMER (Ziigner et al., 2021)
Transformer which makes both the code and
the AST available. It does this in a program-
ming language agnostic way (i.e. it does
not require any language-dependent pipelines
such as generating a control flow graph).

Haque et al. (2022), like Roy et al. (2021) also
sample data from the Funcom dataset (LeClair
et al., 2019), but only ask raters to rate the reference
summaries and summaries generated by a single
baseline, ATTENDGRU (LeClair et al., 2019), an
encoder-decoder RNN which takes only the textual
code data as input.

Su et al. (2024), instead of drawing from a
large dataset of open-source code, uses human-
written reference summaries collected by Bansal
et al. (2024) where programmers were asked to
summarise the purpose of the method in the project.
They evaluate the human references, as well as five
different methods for generating code summaries:

* GPT4-BASE (Su et al., 2024) Summaries ob-
tained by prompting GPT-4.

* GPT4-CONTEXT (Su et al., 2024) Summaries
obtained by prompting GPT-4 given sum-
maries of all the functions that call it in the
code (these summaries were also automati-
cally generated by the model).

* GEMINI-BASE (Su et al., 2024) Same as GPT4-
BASE, but Gemini is prompted instead.

* GEMINI-CONTEXT (Su et al., 2024) Same as
GPT4-CONTEXT, but Gemini is prompted in-
stead.

* JAM-FT (Su et al., 2024) Fine-tuned version
of JAM (Su et al., 2023) based on the outputs
of GEMINI-CONTEXT.

"uoos A[o1[qnd 1oselep Yy dSEa[I [[IM A3y} JBY) PajedIpul dAey Ay,
uTew/a943/2TJ438W-UOTIeS TJewwn
s-apod/oToedoulsew-oTuoue/wod qny1 8/ /:sd11y e ($70g “Te 10 ojoedonseln) £q S[qe[IeAt OpeW SI SILIBWILINS PUE SPOYIOW [BUISLIO oY) SUIpn[oul Josejep dy) Jo uoisioa 939[dwod arow v,

SToyIne yirm

09
X Q0uQLIadxa BAR[JO IBIA | ISBI[

Je pue ‘92139p 20uaIDg Jndwo))

‘(9213es1p A[uons 0} 2213k
A13uons :9reos jurod-) - 309lo1d oy ur s3SIXa poyrow
oy Aym pueisiopun o3 sd[oy jey) UOIIBWLIOJUT SUTE)

[oeo sow) ()] palenyead

1081U09 J0211(] B 1M SJUIPISAI S)/3N) | -U0d AJewrwuns oy, JOUIoym :sseuaanewIojur ey | sired Arewwns Otg 1004 eAef | (20T “Te 12 nS)
[OBa SowW) ¢ PoIen[eAd

01 X 9ouarradxa s1eak saLrewIwnS UoylAg uoylAq (€202

qQnIS | < YIm s19dO[AIp [BUOISSJOI] (G-1) Aoenbape pue Aouony ‘SSQUASIOU0D ABY | OOS PUB BAR[00S :000°C ‘eAe(“[e 10 oBD)
€1 X SIaYI0 /T X Sjuapnis
glenpeIdiopun ¢/ § X SjUIpNIs

Jrenpeis ‘Jg X soTwopeoe (001-0) 1T® [OBa Saw) ¢ pajen[eAd (1202

L,AnuI3 ‘g4 X sI9dO[oAap [BUOISSQJOI] | -19A0)Rl (G-T) Adoenbaope ‘Aouany ‘SSQUISIOUOD ey SOLIBWIWNS §67°C 7689 BAR[“Ie 10 Koy)

0€ x 9ouaradxa | -(ea13esip A[3uons 01 9213k A[Suons :o[eds jurod-1)

SIB3A €' JO 9SBIOAR UB)IM | SSQUASIOUO0D ‘Aoenbape 1uauod ‘AovInode pue Arew [oea sow) ()¢ parenyead (2202

qnu3I3 SI9dO[9ASp BAR[[BUOISSQJOI | -WINS 90UAISJAI pUE pajeIouad usamiaq AjLe[ruuls ajey | sired Arewrwns 01 :00€‘9 BAR[e 10 anbep)

yurg punoagdyoey Jojen[ear] KS0[0POYIdIAI 3z1S | 3den3uer] 32an0g

sjoseIe(] UOIBN[RAY UBWINY :§ 9[qeL,

https://github.com/similarityMetrics/similarityMetrics
https://github.com/devjeetr/Re-assessing-automatic-evaluation-metrics-for-source-code-summarisation-tasks
https://github.com/shuzhenggao/SG-Trans
https://github.com/antonio-mastropaolo/code-summarisation-metric/tree/main
https://github.com/antonio-mastropaolo/code-summarisation-metric/tree/main

You are a professional software engineer.
Evaluate the statement by responding ‘Strongly
agree’, ‘Somewhat agree’, ‘Somewhat disagree’
or ‘Strongly disagree’. Independent of other
factors, I feel the new summary is accurate.

Reference summary: {Reference Summary}
Function:{Original Function}

Generated summary: {Generated Summary}

What are the steps you would take to evaluate
this statement? Show your steps and then
provide an evaluation (Strongly agree, Somewhat
agree, Somewhat disagree or Strongly disagree).

Figure 4: Ask LLM Directly Final Prompt

E Other Variations

E.1 Prompt Variations

Figure 4 shows the final prompt used. In the ref-
erence free case, the "Reference Summary" line is
left out.

We varied the Ask Claude Directly prompts in
six different ways: the quality dimension definition
the summary was to be rated on, the role defini-
tion for role-based prompting, the format of the ex-
pected response, whether chain-of-thought prompt-
ing was used, whether the reference summary was
included and whether the reference code was in-
cluded.

E.1.1 Quality Dimensions

Consistent-1 Rate how consistent the following
summary is with the corresponding function and
reference summary. Note that consistency means
that all the information in the new summary is sup-
ported by the code [or the reference summary, when
provided].

Consistent-2 The following summary is consis-
tent. Note that consistency means that all the in-
formation in the new summary is supported by the
code [or the reference summary, when provided].

Accurate-POS Independent of other factors, I
feel the new summary is accurate.

Accurate-NEG Independent of other factors, I
feel the new summary is inaccurate.

Adequate-POS The new summary contains all
of the important information required for under-
standing the method.

Adequate-NEG The new summary is missing
important information, and that can hinder the un-
derstanding of the method.

Concise-POS The new summary only contains
necessary information.

Concise-NEG The new summary contains a lot
of unnecessary information.

Informative-1 The summary contains informa-
tion that helps to understand why the method exists
in the project

Informative-2 Independent of other factors, I
feel that the new summary contains relevant in-
formation that helps to understand why the method
exists in the project

E.1.2 Role Definitions

Software Engineer You are a professional soft-
ware engineer.

Professor You are a Professor of Computer Sci-
ence at a reputable university.

E.1.3 Response Options

We often mentioned the response options multi-
ple times in the prompt. In italics is the location
of the that particular piece of text which can be
cross-referenced with the prompt scaffolds in sub-
subsection E.1.5.

1-5 After Data Rating (1 to 5):

0-100 Before Data Give a rating from 0 to 100
where 0 means completely inconsistent and 100
means the summary is fully consistent with the
code or the reference summary.

After Data Rating (0 to 100):

Agree-Disagree Before Quality Dimension Eval-
uvate the statement by responding ‘Strongly
agree’, ‘Somewhat agree’, ‘Somewhat disagree’
or ‘Strongly disagree’.

After Data Evaluation (Strongly agree, Somewhat
agree, Somewhat disagree or Strongly disagree):

Agree-Disagree + Chain of Thought Before
Quality Dimension Evaluate the statement by re-
sponding ‘Strongly agree’, ‘Somewhat agree’,
‘Somewhat disagree’ or ‘Strongly disagree’.

After Data What are the steps you would take to
evaluate this statement? Show your steps and then
provide an evaluation (Strongly agree, Somewhat
agree, Somewhat disagree or Strongly disagree):

Agree-Neutral-Disagree + Chain of Thought
Before Quality Dimension Evaluate the statement
by responding (Strongly agree, Somewhat agree,

Quality Role Response Options Chain of Reference Reference
Dimension Definition Thought Summary Code
consistency-no-ref Consistent-1 X 1-5 X X v
consistency-no-ref-code Consistent-1 X 1-5 X v X
consistency-1-5 Consistent-1 X 1-5 X v v
consistency-0-100 Consistent-1 X 0-100 X v v
consistency-agree-disagree Consistent-2 X Agree/Disagree X v v
accuracy Accurate-POS X Agree/Disagree X v v
adequacy-neg Adequate-NEG X Agree/Disagree X v v
conciseness-neg Concise-NEG X Agree/Disagree X v v
adequacy Adequate-POS X Agree/Disagree X v v
conciseness Concise-POS X Agree/Disagree X v v
accuracy-sftw-eng Accurate-POS Soft. Eng. Agree/Disagree X v v
accuracy-professor Accurate-POS Professor ~ Agree/Disagree X v v
Final Method Accurate-POS Soft. Eng. Agree/Disagree v v v
accuracy-neg Accurate-NEG X Agree/Disagree X v v
accuracy-sftw-eng-cot-neutral | Accurate-POS Soft. Eng. Agree/Neutral/Disagree v v v
accuracy-sftw-eng-cot-no-ref | Accurate-POS Soft. Eng. Agree/Disagree v X v
informative-sftw-eng-cot Informative-1 Soft. Eng. Agree/Disagree v v v
informative2-sftw-eng-cot Informative-2 Soft. Eng. Agree/Disagree v v v
Table 9: Variants tested for Ask-Claude
\ Adequacy Conciseness Fluency

consistency-no-ref 0.59 0.32 0.40

consistency-no-ref-code 0.55 0.31 0.36

consistency-1-5 0.58 0.35 0.40

consistency-0-100 0.59 0.30 0.37

consistency-agree-disagree 0.58 0.41 0.42

accuracy 0.59 0.38 0.43

adequacy-neg 0.46 0.27 0.31

conciseness-neg -0.37 -0.32 -0.40

adequacy-pos 0.60 0.33 0.37

conciseness 0.59 0.35 0.41

accuracy-sftw-eng 0.60 0.37 0.43

accuracy-professor 0.58 0.37 0.43

Final Method 0.64 0.32 0.43

accuracy-neg 0.16 -0.01 0.03

accuracy-sftw-eng-cot-neutral 0.60 0.34 0.40

accuracy-sftw-eng-cot-no-ref 0.60 0.31 0.34

Table 10: Variants tested for Ask-Claude: Spearman’s Correlation with Adequacy, Conciseness and Fluency on Gao
et al. training dataset

Informativeness Function:
Final Method 0.30 {reference method }
informative-sftw-eng-cot 0.29 Generated summary: {generated summary }
informative2-sftw-eng-cot 0.23

Reference Summary Only
Reference summary: {reference summary}
Generated summary: {generated summary }

Table 11: Quality Dimension Variants tested for Ask-
Claude on Su et al. dataset training dataset

Neutral, Somewhat disagree or Strongly disagree).
After Data What are the steps you would take to
evaluate this statement? Show your steps and then
provide an evaluation (Strongly agree, Somewhat
agree, Neutral, Somewhat disagree or Strongly dis-
agree):

Reference Code Only

Function:

{reference method}

Generated summary: {generated summary}

E.1.5 Prompt Scaffold

[Role Definition] [Response Options:
Before Quality Dimension] [Quality
Dimension] [Response Options: Before
Data]

E.1.4 Data Provided

Reference Summary and Reference Code
Reference summary:{reference summary }

[Data Provided]
[Response Options: After Data]

E.2 Question-Answering Variation

We also tried to use Claude as part of a Question-
Answering-style metric, inspired by previous work
in text summarisation (e.g. QAGS (Wang et al.,
2020), QAEval (Deutsch et al., 2021a), QuestE-
val (Scialom et al., 2021) and QAFactEval (Fabbri
et al., 2022)), but this approach did not end up pro-
viding any improvements compared to the n-gram
based metrics. The main idea is that after reading
a good generated summary you should be able to
answer questions about the subject similarly to if
you had read the reference summary instead. The
details of our approach are as follows:

1. Find all noun phrases in the reference sum-
mary using spaCy (en_core_web_sm).

2. Generate questions by replacing each noun
phrase with a gap. For example, for the
summary “returns the label text for
the given element”, one question would
be “returns the for the given
element”.

3. Given only the generated summary, prompt
an LLM to try to fill in the blank for each
question generated in Step 2. We used Claude
3 Opus.

4. Compare the correct answers with the re-
sponses generated by the model by converting
each answer to an embedding (we used gte-
base-en), and calculating cosine similarity.

5. Return the mean of the cosine similarity
scores for each question as the final score.

The main difference between our approach and
the standard approach for text summarisation is
Step 2, question generation, as we programmati-
cally generate the questions as a fill-in-the-blank
rather than ask an LLM to generate the questions
given the reference code and summary. The reason
for this change was because we found that the ques-
tions generated were too specific (e.g., “What does
the variable i do?”), whose answers don’t appear
in a code summary.

E.2.1 QA Prompt

Based on the following code summary, fill in
the blanks for the other code summary based on
the same function.

For example:

Code Summary: ‘get the list of the user’

Question: ‘returns ___ of collaborate
collections for the given user id’
Answer: ‘the list’

Code Summary: {Generated_summary}
Question: {Question}
Answer:

Figure 5: Question Answering Prompt for Question
Generation Step

E.2.2 Variants

We tested many different variants on the Gao et al.
dataset, varying seven different aspects of the pro-
cess. The combinations tested are provided in Ta-
ble 12, and the results are in Table 13. We outline
each of the variations below:

+ verb phrases In the answer selection step, in-
clude all tokens whose part of speech is ‘VERB’
as well as all of the ‘noun chunks’, as outputted by
SPaCY en_core_web_sm.

- verb phrases In the answer selection step, only
include the ‘noun chunks’ from the summary.

+ few shot Include an example(s) of the expected
output in the prompt. The exact wording depends
on 1) the return format and 2) if n.a. is an option if
there is not enough information.

JSON prompt (with n.a.):

Based on the following code summary,
fill in the blanks for the other
code summary based on the same function.

For example:
Code Summary: 'get the list of the user
Question: returns ___ of collaborate
collections for the given user id
Answer: {
"answers": [
"the list”

Return as word only prompt (without n.a.):

+verb +few shot +returnas +n.a. if not +use whole +use +handle n.a.
phrases word only enough result gte-base-en differently
information sentence for for embed-
similarity dings

Final QA Method X v v X X v n.a.
NA-counts-as-0 X v v v X v v (n.a. =0)
NPs-Only X v 4 4 X v X
NPs-Only-JSON X v X v X v X
NA-counts-as-0.5 X v v v X v v (n.a. =0.5)
NA-not-counted X v v v X v v/ (exclude n.a.)
NPs+VPs v v v v X v X
NPs+VPs-SBERT v v v v X X X
NPs-Only-zero-shot X X v v X v X
full-sent-SBERT v v v v v X X
full-sent-GTE v v v v v v X

Table 12: Variants tested for Question Answering (Ordered from best to worst on Accuracy on Gao et al. (Java)

train dataset)

‘ Adequacy Conciseness Fluency
Final QA Method 0.55 0.11 0.20
NA-counts-as-0 0.54 0.17 0.25
NPs-Only 0.54 0.16 0.22
NPs-Only-JSON 0.53 0.17 0.25
NA-counts-as-0.5 0.53 0.14 0.20
NA-not-counted 0.53 0.14 0.20
NPs+VPs 0.53 0.21 0.28
NPs+VPs-SBERT 0.49 0.20 0.29
NPs-Only-zero-shot 0.46 0.13 0.22
full-sent-SBERT 0.45 0.11 0.22
full-sent-GTE 0.44 0.07 0.16

Table 13: Variants tested for Question Answering: Spearman’s Correlation with Adequacy, Conciseness and Fluency

on Gao et al. training dataset

Based on the following code summary,
fill in the blanks for the other
code summary based on the same function.

For example:
Code Summary: “get the list of the user”
Question: “returns ___ of collaborate

collections for the given user id"
Answer: “the list"

- few shot In the no few shot scenario, the prompt
just includes an explanation of the task, e.g.

Use only the information from the code
summary to fill in the blank on the
following question. If there is not enough

information to give an answer, write 'n.a."'.

+ return as word only Prompt the LLM to just
return the answer to the question.

Only provide your answer in the response.
... {the summary and the question} ...
Answer:

- return as word only Prompt the LLM to return
the answer to the question in JSON format.

Return your answer in json format,
for example
{
"answers": [
"answer"”

}

+ n.a. if not enough information Prompt the
LLM to return n.a. if it thinks there is not enough
information in the summary to answer the question.

- n.a. if not enough information Do not specify
how to handle situations where there is not enough
information in the summary to answer the question.

+ use whole result sentence for similarity The
response from the LLLM was re-inserted back into
the blank, and then the embedding of this full sen-
tence was compared against the embedding of the
original summary.

- use whole result sentence for similarity Only
the single word that was generated and the orig-
inal word that should have filled the blank were
compared.

+ use gte-base-en for embeddings Embeddings
for each of the generated and reference answers
were calculated using gte-base-en-v1.5.

- use gte-base-en for embeddings Embeddings
were instead calculated with SentenceBERT.

+ handle n.a. differently When the model re-
sponded with n.a., these questions were automat-
ically assigned a predetermined similarity score
(0 or 0.5) or excluded from the final calculation
completely.

- handle n.a. differently For cases where the
model responded with n.a., the contribution of n.a.
to the final score was just the cosine similarity of
the expected answer and the string ‘n.a.’, i.e. han-
dled the same as all other answers.

F Claude Evaluating Itself

We asked Claude to rate its own output. The sum-
maries were generated with the prompt in Fig-
ure 6. They were evaluated using the Ask-Claude
consistency-agree-disagree prompt on the Gao et al.
Java training dataset. The results are in Figure 7.

Write a comment that summarises the following
code. Ensure that it is fully consistent, so
all information in the comment is supported by
the code.

Function: {Function}

Comment :

Figure 6: Prompt given to Claude for Summary Genera-
tion

1,000 960 |

800 |- A

600 |- a

Count

400 |- N

200 a

: 45
ol o =30 =

T T T T
Strongly Slightly Slightly Strongly
Disagree Disagree Agree Agree

claude-rates-itself

Figure 7: Ask-Claude scores for summaries generated
by Claude 3.5 (for functions from the Gao et al. dataset)

G Correlation with Comment Length

See Table 14.

H Relative Rankings of Each Model by
Metric

See Figure 8.

Roy et al. Haque et al. Gao et al. Gao et al. Su et al.

(Java) (Python)

adequacy 0.00 0.15 -0.04 0.00 n.a.
conciseness -0.08 -0.08 -0.36 -0.02 n.a.
fluency -0.02 n.a. -0.15 0.06 n.a.
accurate n.a. 0.06 n.a. n.a. n.a.
similarity n.a. 0.27 n.a. n.a. n.a.
overall score -0.01 n.a. n.a. n.a. n.a.
informativeness n.a. n.a. n.a. n.a. -0.41
BLEU-A 0.20 0.43 -0.02 0.05 -0.07
METEOR 0.16 0.32 -0.08 0.02 0.06
ROUGE-L 0.03 0.25 -0.20 -0.05 -0.35
SIDE 0.02 0.16 -0.21 -0.01 -0.49
SentenceBERT 0.09 0.35 -0.13 0.02 0.17
gte-base-en 0.07 0.29 -0.12 0.01 -0.03
voyage-code-3 0.06 0.33 -0.10 0.00 -0.01
ask-OLMo -0.08 0.14 -0.15 -0.05 0.25
ask-OLMo-no-ref -0.13 0.14 -0.18 -0.01 0.20
ask-gpt -0.03 0.15 -0.24 0.06 0.22
ask-claude -0.01 0.13 -0.12 -0.01 0.26
ask-claude-no-ref -0.11 0.13 -0.19 -0.03 0.25

Table 14: Correlation with Comment Length

SG-Trans SG-Trans

NeuralCode

2 GREAT

sum 2 2
g GREAT 4 3 1 5 g NeuralCode
= =
Transformer 4 4 4 - 4 4 4 - Transformer
Code Code
Transformer S S S 5 B B S © Transformer

Human ask- ask- ask-gpt ask-OLMo ask- voyage- SIDE BLEU-A Human ask- ask- ask-gpt ask-OLMo ask- voyage- SIDE BLEU-A
Rankings claude claude- OLMo-no- code-3 Rankings claude claude- OLMo-no- code-3
no-ref ref no-ref ref
Metric Metric

(a) Model Rankings by Metric (Gao et al. Java, Adequacy) (b) Model Rankings by Metric (Gao et al. Python, Adequacy)

jam-ft

gpt4
baseline

gemini
context

Model

gemini
baseline

apta

context 5 4 4 4 4 4 4 5 5
Human ask- ask- ask:gpt ask-OLMo ask- voyége— SIDE BLEU-A
Rankings claude claude- OLMo-no- code-3

no-ref ref

Metric

(c) Model Rankings by Metric (Su et al., Informativeness)

Figure 8: Relative Rankings of Each Model by Metric

	Introduction
	Related Work
	Task
	New Metric: Ask LLM Directly
	Experiments
	Datasets
	Measuring Correlation
	Metrics

	Results
	Analysis

	Conclusion
	Other Aspects of Quality
	Confidence Intervals

	Significance Testing
	Metrics Tested
	Dataset Statistics
	License Information
	Dataset Measures
	Models Tested

	Other Variations
	Prompt Variations
	Quality Dimensions
	Role Definitions
	Response Options
	Data Provided
	Prompt Scaffold

	Question-Answering Variation
	QA Prompt
	Variants

	Claude Evaluating Itself
	Correlation with Comment Length
	Relative Rankings of Each Model by Metric

