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Abstract

Information extraction (IE) in specialized do-
mains like computer science and chemistry is
challenged by the poor generalization of tra-
ditional models and the knowledge deficits
of general-purpose Large Language Mod-
els (LLMs). We introduce a robust, LLM-
based framework featuring two core contri-
butions: an end-to-end training and inference
paradigm that combines continual pre-training
(CPT) for knowledge injection, supervised fine-
tuning (SFT) for task alignment, and retrieval-
augmented generation (RAG) for inference-
time enhancement; and a novel LLM-assisted
data annotation pipeline for the efficient cre-
ation of high-quality training data. Comprehen-
sive experiments demonstrate that while fine-
tuning alone yields strong in-domain perfor-
mance, our complete framework exhibits su-
perior robustness and generalization. It con-
sistently achieves state-of-the-art results in
challenging domain-shift and novel-schema
scenarios, validating our integrated approach
for building adaptable and high-performance
domain-specific IE systems.

1 Introduction

Domain-specific information extraction is crucial
for converting unstructured data, such as scientific
text or chemical descriptions, into structured knowl-
edge, which in turn enables downstream tasks like
knowledge graph construction and scientific discov-
ery (Dagdelen et al., 2024). However, traditional
IE models suffer from poor generalization; models
trained for a specific schema often fail to generalize
to new entity and relation types or different data
domains (Peng et al., 2021).

Large Language Models (LLMs) offer a promis-
ing alternative: they exhibit strong generalization
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and can follow instructions to extract information
without task-specific architecture. However, their
accuracy on specialized IE tasks often fails to
surpass traditional, domain-trained models (Han
et al., 2023), as general-purpose LLMs lack de-
tailed domain knowledge (e.g., chemical nomencla-
ture (Castro Nascimento and Pimentel, 2023), sci-
entific terminology) and are not optimized for the
nuances of structured extraction (Dagdelen et al.,
2024). To harness the generalization capabilities of
LLMs for high-quality, domain-specific extraction
while overcoming their inherent limitations, several
key challenges must be addressed:

• Injecting domain knowledge: The LLM
must be enriched with specialist knowledge
of target domains (here, computer science and
chemistry) to overcome its knowledge gaps.

• Improving IE capabilities: The LLM should
be fine-tuned to adeptly perform the informa-
tion extraction task itself, enabling it to accu-
rately identify and structure entities and rela-
tions from complex texts, thereby surpassing
the performance of traditional IE models.

• Enhancing cross-schema generalization:
The solution should handle different en-
tity–relation type schemas and adapt to new
types or distributions with minimal re-training,
leveraging the LLM’s generalization.

To address these challenges, we design and im-
plement a comprehensive, LLM-based information
extraction framework that significantly enhances
a model’s domain knowledge, extraction accuracy,
and generalization stability. Our core contributions
include:

• An end-to-end training and inference
paradigm that integrates Continual Pre-



training (CPT), Supervised Fine-tuning
(SFT), and Retrieval-Augmented Gener-
ation (RAG). This paradigm is designed
to systematically inject domain knowledge,
align the model with the specific extraction
task, and leverage external knowledge to
enhance its ability to handle complex cases.

• A novel LLM-assisted data annotation
pipeline that efficiently constructs high-
quality, domain-specific training datasets at
a low cost. By leveraging multi-model col-
laboration, consensus fusion, and a reward
model gating mechanism, this pipeline effec-
tively mitigates the data bottleneck problem.

We validate our framework through a compre-
hensive evaluation in the computer science and
chemistry domains across three rigorous scenar-
ios: in-domain, domain-shift, and novel-schema
settings. Our experimental results demonstrate that
while fine-tuning alone yields strong in-domain
performance, our complete framework exhibits su-
perior robustness and generalization. This advan-
tage becomes particularly evident when faced with
data distribution shifts and unseen schemas, where
our full framework outperformed the fine-tuning-
only baseline by a margin of 3.0 and up to 6.7
entity F1 points, respectively. This research charts
a clear and effective path toward building high-
performance, domain-specific IE systems that can
adapt to the variable conditions of real-world appli-
cations.

2 The Proposed Framework

Our approach transforms a general-purpose LLM
into a specialized and robust information extrac-
tor through an integrated, three-stage workflow, as
illustrated in Figure 1. Below is the detailed de-
scription of each stages.

2.1 Continual Pre-training for Domain
Knowledge

To inject domain-specific knowledge into the base
LLM, we employ Continual Pre-training. This
foundational stage adapts the model’s language un-
derstanding to the target domains by exposing it to
a large corpus of specialized text. Our approach is
carefully designed not only to acquire new knowl-
edge but also to mitigate the catastrophic forgetting
of the model’s general capabilities.

2.1.1 Objective and Forgetting Mitigation
The primary objective of CPT is to enrich the LLM
with the terminology, concepts, and stylistic nu-
ances of the target domains. A key challenge in
this process is mitigating catastrophic forgetting
(Gu et al., 2024). To address this, we curate a bal-
anced mixture of general and domain-specific data.
Rather than relying on exhaustive grid searches, we
follow the D-CPT scaling law (Que et al., 2024)
to determine the optimal domain/general data mix.
The D-CPT is achieved by modeling the monotonic
trade-off between domain loss and general-corpus
loss from a small set of pilot runs, allowing us to se-
lect a domain data share rd that minimizes domain
validation loss while constraining the increase of
general validation loss within a predefined toler-
ance budget T .

2.1.2 Corpus Curation and Cleaning
We assemble the domain corpora from established
scientific sources, including arXiv CS categories
and the ACL Anthology for computer science,
and PubMed/PMC subfields and patent corpora
for chemistry. Prior to CPT, we execute a deter-
ministic cleaning pipeline to ensure data quality.
This pipeline comprises: (i) language identifica-
tion and basic normalization; (ii) de-boilerplating
and removal of non-content sections; (iii) OCR
and markup error repair; (iv) topicality filtering
using domain-specific lexicons; and (v) exact and
near-duplicate removal via shingled MinHash/LSH.
This process yields a clean, diverse, and on-topic
corpus for both domains.

2.2 Dataset Construction
A high-quality, comprehensive training dataset for
information extraction (IE) is the cornerstone of our
approach. We construct it by (i) gathering, cleaning,
and unifying existing open IE datasets in our target
domains (computer science and chemistry) and (ii)
creating a custom, LLM-assisted annotated dataset
tailored to our schemas.

2.2.1 Gathering and Comparing Open IE
Datasets

We first collect relevant public IE datasets, then
standardize and merge them. Below summarizes
the key resources for computer science and chem-
istry/biomedical domains, respectively.

Computer Science. We include SciERC (Luan
et al., 2018) with six entity types (Task, Method,
Metric, Material, OtherScientificTerm, Generic)



Figure 1: LLM-based Framework for Domain-Specific Information Extraction.

and seven relation types (e.g., Used-for, Com-
pare, Part-of ). SciREX (Jain et al., 2020) con-
tributes cross-sentence coreference and document-
level relations. SciER (Zhang et al., 2024) adds a
large number of entities/relations and focuses on
Dataset, Method, and Task, with fine-grained rela-
tions and an out-of-distribution split. To increase
diversity, we incorporate CrossNER (Peng et al.,
2021) (a cross-domain NER collection; we use
the AI/Science splits) and CrossRE (Wang et al.,
2022) (a cross-domain relation extraction dataset
with multi-label relations). This multi-source inte-
gration spans multiple schemas and helps models
handle schema heterogeneity.

Chemistry/Biomedical. We compile datasets
capturing chemical/biomedical entities and rela-
tions. NLM-Chem (Kim et al., 2021) provides rich
full-text chemical NER. For relations, ChemProt
(Krallinger et al., 2017) offers sentence-level rela-
tion labels (e.g., inhibitor, upregulator). BioRED
(Luo et al., 2022a) includes multiple entity types
and document-level relations, marking novelty.
From chemical patents, ChEMU-2020 (Nguyen
et al., 2020) targets reaction extraction with enti-
ties like Reactant, Product, Catalyst, Solvent, and
conditions (Temperature, Time), plus event-style
relations. EnzChemRED (Lai et al., 2024) focuses

on enzyme–reaction relations, linking to ontologies
(e.g., ChEBI, UniProt). Together these resources
align with our chemistry use-cases and add com-
plementary schemas.

Data Cleaning and Unification. To unify the
diverse datasets, we standardize all annotations
into a consistent JSON format and resolve nota-
tional conflicts. To manage the inherent schema
heterogeneity, each training prompt explicitly de-
fines the target entity and relation types for the
given instance. This unification process is designed
to expand data coverage and enhance the model’s
robustness to schematic variations.

2.2.2 LLM-Assisted Custom Data Annotation
To supplement the public corpora, we designed
and implemented a novel LLM-assisted annotation
pipeline to efficiently create high-quality, schema-
specific training data. Our approach systemati-
cally reduces manual effort and ensures data quality
through a multi-stage workflow. As show in Fig-
ure 2, this process involves: (1) strategic candidate
sourcing, (2) parallel labeling by multiple LLMs to
generate diverse annotations, (3) agreement-based
fusion to consolidate results, (4) quality control
via a calibrated reward model, and (5) a focused
human-in-the-loop process for arbitration and feed-
back. Ultimately, this pipeline provides a cost-



effective methodology for generating high-quality,
tailored training data, ensuring both label precision
and broad data coverage. A detailed description of
each stage is provided in Appendix A.

2.3 Model Fine-tuning and Training
Strategies

Following domain-adaptive CPT, we perform SFT
to align the model with the specific task of struc-
tured information extraction. This stage uses a
carefully composed mixture of our curated, chat-
formatted IE dataset and a high-quality general
instruction-following dataset. This approach is de-
signed to teach the model how to generate accurate
and well-formed entity-relation structures, while
simultaneously managing the trade-off between
domain specialization and its broader instruction-
following capabilities.

2.3.1 Training Variants
To systematically evaluate the impact of different
base models, training stages, we designed two dis-
tinct experimental cases. The CPT dataset consists
of a mix of general and domain-specific texts, while
the SFT dataset combines our constructed domain-
specific IE data with general instruction-following
examples.

• Case 1 (SFT-only): A general-purpose chat
model is fully fine-tuned on the SFT dataset.
This evaluates the performance ceiling of a
standard chat model without domain-specific
pre-training.

• Case 2 (CPT-SFT): The base model first un-
dergoes full-parameter CPT with the CPT
dataset, followed by full-parameter SFT on
the SFT dataset. This case represents our full,
two-stage proposal.

2.3.2 Data Composition and Mixture Strategy
Balancing task-specific specialization with general
capabilities in SFT can trigger training conflicts
or catastrophic forgetting (Dong et al., 2023). We
therefore adopt a two-stage curriculum with mix-
ture optimization. In Stage 1, the model is fine-
tuned exclusively on our IE dataset to acquire struc-
tured extraction skills. In Stage 2, training con-
tinues on a mixture of general SFT data plus a
small sampled subset of the IE data; the general
data restores broad abilities while the sampled IE
acts as rehearsal to mitigate forgetting. To deter-
mine the optimal data composition for this second

stage, we took inspiration from Gu et al.(Gu et al.,
2025) to set initial candidate ratios (e.g., 300:1,
150:1 of general-to-IE data) and then identified
the best-performing mixture through small-scale
empirical tests. This two-stage curriculum effec-
tively resolves the training conflict, allowing us to
maximize the model’s IE performance without a
significant loss of its general instruction-following
abilities.

2.4 Retrieval-Augmented Generation (RAG)
for IE

Even after fine-tuning, a model may struggle with
complex cases or long-tail knowledge (Liao et al.,
2024). We therefore integrate a RAG component
that equips the extractor with an explicit, query-
time knowledge base (KB) of reference examples
and facts. The core idea is to maintain a repository
of labeled examples so that, when extracting from
new inputs, the model can draw on similar past
cases to assist its predictions.

2.4.1 Knowledge Base Construction
We populate the KB with high-quality extraction
examples, drawn from two primary sources:

• Confidently labeled data: This includes high-
quality, LLM-annotated samples and ground-
truth data from public datasets, consistent with
the data construction methodology detailed in
Sections 2.2.1 and 2.2.2. Concretely, we re-
tain the top 10–20% most confident instances
per batch—measured by the reward-model
score after JSON-schema and span-alignment
validation—and we explicitly exclude any in-
stance used for supervised fine-tuning from
the KB.

• Manually verified cases: Difficult exam-
ples that the pipeline initially withheld due
to high model disagreement (e.g., high con-
troversy; see Appendix A) or validation is-
sues, and were subsequently reviewed by do-
main experts (two annotators with a third ar-
bitrator). We also include failure cases sur-
faced in downstream use that were corrected
by experts. These curated items provide valu-
able exemplars for resolving ambiguity and
expanding coverage of hard cases.

Each KB entry is stored as a (text, extraction) pair.
To support efficient look-up, we index the KB us-
ing a hybrid approach that combines semantic and



Figure 2: LLM-assisted custom data annotation workflow for IE.

lexical matching: a vector index (FAISS) is built
on text embeddings for semantic similarity, and
an entity-aware inverted index is used to rapidly
match entries containing shared entity mentions.

2.4.2 Two-Stage Retrieval
Given a new input passage, we employ a two-stage
retrieval process to gather relevant exemplars from
the knowledge base.

(1) Entity-based Retrieval. First, a fine-tuned
BERT-based model for entity mention detection
extracts potential entity strings from the input text,
without performing classification. These identi-
fied entity strings are then used to query the entity-
aware inverted index, retrieving all KB entries that
contain one or more of these exact entities. This
stage ensures high topical relevance between the
retrieved examples and the input.

(2) Semantic Retrieval. Concurrently, we use
a Sentence-BERT model to generate a dense vec-
tor embedding for the entire input passage. This
embedding is used to perform a nearest-neighbor
search against the vector index of the KB, retriev-
ing passages that are contextually and semantically
similar, even if they lack shared entities.

Result Combination and Re-ranking The top-k
results from both retrieval methods are aggregated
to form a candidate pool. We then re-rank these
candidates using a hybrid score that balances lexi-
cal matching (via entities) with semantic similarity.

To ensure both components are on a comparable
scale, we first normalize the entity overlap into a
score, siment(e). This score is defined as the frac-
tion of query entities (Eq) found in the candidate
document’s entities (Ee):

siment(e) =
|Eq ∩ Ee|

|Eq|

The final re-ranking score is then a weighted linear
combination of this entity score and the semantic
similarity score, simsem(e):

score(e) = λ · siment(e) + (1− λ) · simsem(e)

Here, λ ∈ [0, 1] is a tunable hyperparameter that
controls the relative importance of entity-based rel-
evance versus overall contextual similarity. Its op-
timal value is determined based on performance on
a held-out validation set.

2.4.3 Prompt Integration and Dynamic
Improvement

The top-ranked retrieved (text, extraction)
pairs are formatted as in-context examples to guide
the model’s generation. Crucially, to prevent
schema confusion, retrieved candidates are first
filtered to ensure they match the target schema of
the current task. These schema-consistent exam-
ples provide the model with on-the-fly guidance
on output format and extraction logic for challeng-
ing cases. To ensure quality and prevent simple
copying, we apply several safeguards: filtering out



examples with high lexical overlap to the input,
using minimal text snippets to maintain a concise
prompt, and instructing the model to use the exam-
ples for reference only.

Furthermore, we implement a ’data flywheel’ to
ensure the RAG system’s long-term effectiveness.
High-confidence new extractions, often validated
through a lightweight human verification step, are
continuously added back into the knowledge base.
This iterative process progressively enriches the
KB in both scale and quality, enhancing future
RAG performance without the need for frequent
model retraining.

3 Experiments

Our experiments are designed to rigorously evalu-
ate our proposed framework and validate the con-
tributions of its core components. We structure our
evaluation around three key research questions:

• RQ1: Overall Performance. How does
our full framework perform against base-
lines(general purpose LLM) on domain-
specific IE tasks, under both in-domain and
domain-shifted conditions?

• RQ2: Ablation Study. What is the individual
contribution of each key component(CPT and
RAG) to the final extraction performance?

• RQ3: Generalization Analysis. How effec-
tively does our framework generalize to novel,
unseen schemas, demonstrating its adaptabil-
ity?

3.1 Experimental Setup

3.1.1 Training and Test Data
Training Data. Our models for the computer sci-
ence (CS) and chemistry domains were trained sep-
arately. For the CPT stage, we started with 500k
general-domain texts and 100k texts for each spe-
cific domain. Following the data mixing search
strategy from Section 2.1, the final compositions
were a 400k:100k ratio of general-to-CS data for
the computer science model, and a 350k:100k ratio
for the chemistry model. For the SFT stage, each
domain’s dataset comprised 8,000 high-quality IE
instances (5,000 from public datasets and 3,000
constructed via our pipeline). Based on the strategy
in Section 2.3.2, each domain model was first fine-
tuned on the complete set of 8,000 IE instances for
specialization. The second stage then employed

a mixed dataset for generalization and rehearsal,
consisting of 50k general and 1k sampled CS in-
stances for computer science, and 100k general and
1k sampled chemistry instances for chemistry.

Test Data. We evaluate all models on three dis-
tinct test sets, each containing 500 instances for
computer science and 500 for chemistry:

• Test Set A (IID): This set was constructed
using our in-house annotation pipeline and
has a data distribution similar to our self-built
training data. It measures the model’s core
extraction accuracy on a familiar data distri-
bution.

• Test Set B (Domain Shift): Also constructed
in-house, this set features a noticeable domain
shift. For instance, while the CS data in Test
Set A focuses on the AI subfield, Test Set B
contains texts from non-AI subfields, sourced
using specific keywords and categories. This
set assesses model robustness.

• Test Set C (Novel Schema): This set uses the
official test splits of public datasets—SciERC
for computer science and ChemU for chem-
istry. To ensure a fair test of schema general-
ization, the training sets of these two datasets
were completely excluded from our model
training while keeping in RAG knowledge
base.

3.1.2 Models for Comparison
All our trained models are based on the Qwen2.5-
7B large language model. We compare the follow-
ing configurations:

• Chat-only: The publicly available Qwen2.5-
7B-Chat model, used directly without any
fine-tuning, serves as a strong baseline.

• SFT-only: This model is initialized from
Qwen2.5-7B-Chat and then fully fine-tuned
on our SFT datasets for each domain.

• CPT-SFT: Our proposed model without re-
trieval. It starts from the Qwen2.5-7B-Base
model, first undergoes CPT with our mixed-
domain corpora, and is then SFT.

• RAG Models: We also evaluate three RAG-
enhanced variants: Chat-RAG, SFT-RAG
and our full system, CPT-SFT-RAG, to mea-
sure the impact of retrieval.



3.2 Main Results and Analysis

We evaluate entity and relation extraction perfor-
mance using F1-score. Table 1 presents the com-
prehensive evaluation of all model variants across
the six test sets for both Computer Science (CS)
and Chemistry (Chem) domains. Our analysis is
structured around the three research questions to
dissect these results.

3.2.1 RQ1: Overall Performance
As shown in Table 1, the baseline ‘Chat-only‘
model exhibits modest performance, confirming
that general-purpose LLMs struggle with the struc-
tured and specialized nature of domain-specific IE
tasks. The introduction of fine-tuning (‘SFT-only‘)
provides a substantial performance leap, highlight-
ing the necessity of task-specific adaptation.

Our full proposed model, CPT-SFT-RAG,
demonstrates the most robust overall performance.
While SFT-RAG achieves the highest scores on the
in-domain Test Set A for both CS and Chemistry,
CPT-SFT-RAG excels under more challenging con-
ditions. It secures the top F1-scores on Test Set
B (Domain Shift) and Test Set C (Novel Schema)
across both domains. This superior performance
under distribution shifts and on unseen schemas
validates our framework’s primary goal: to create
an IE system that not only performs well but also
generalizes robustly, effectively mitigating the brit-
tleness of traditional models and the knowledge
deficit of general LLMs.

3.2.2 RQ2: Ablation Study
By comparing different model configurations, we
can isolate the contributions of CPT and RAG.

Impact of Continual Pre-training (CPT). A
comparison between SFT-only and CPT-SFT re-
veals the crucial role of domain knowledge in-
jection. In the CS domain on Test A, SFT-only
slightly outperforms CPT-SFT. This may be at-
tributed to the base LLM’s existing familiarity with
computer science concepts, where direct SFT on a
chat-tuned model can be highly effective. However,
in the Chemistry domain, which contains more spe-
cialized terminology and symbolic representations,
CPT-SFT surpasses SFT-only on Test A. This sug-
gests that the greater the knowledge gap between
the general domain and the target domain, the more
significant the benefit of CPT.

Furthermore, across both domains on the more
challenging Test B and Test C, CPT-SFT consis-

tently outperforms SFT-only. This demonstrates
that CPT provides a stronger and more generaliz-
able knowledge foundation, enhancing the model’s
stability against data distribution shifts and its
adaptability to new schemas.

Impact of Retrieval-Augmented Generation
(RAG). RAG consistently improves performance
across all base models. The most dramatic gain is
seen when applying it to the baseline, where Chat-
RAG significantly outperforms Chat-only. How-
ever, the performance uplift from RAG diminishes
as the base model becomes more capable (i.e., the
gain from SFT-only to SFT-RAG is larger than from
CPT-SFT to CPT-SFT-RAG). This indicates that
while RAG is a powerful tool, its marginal benefit
is related to the base model’s inherent instruction-
following and domain understanding capabilities.

Interestingly, in the knowledge-intensive Chem-
istry domain, the improvements from CPT are often
more pronounced than those from RAG. For in-
stance, CPT-SFT achieves a higher entity F1 across
all three Chemistry test sets compared to SFT-RAG,
despite SFT-RAG having access to in-context ex-
amples. This suggests that for highly specialized
domains, knowledge internalized through CPT pro-
vides a more robust and fundamental capability
than knowledge supplied externally via retrieval at
inference time.

3.2.3 RQ3: Generalization to Novel Schemas

The results on Test Set C (SciERC for CS and
ChEMU for Chem) directly measure the models’
ability to generalize to unseen schemas defined
only in the prompt. The CPT-SFT-RAG model
achieves the highest performance on both entity
and relation extraction in this setting. On SciERC,
it reaches a 69.9 entity F1, and on the complex
ChEMU dataset, it achieves a 84.9 entity F1, lead-
ing all other configurations.

This success highlights the synergy of our frame-
work’s components. CPT provides the model with
a deep understanding of the domain’s entities and
their typical interactions. SFT fine-tunes its abil-
ity to follow structured instructions. Finally, RAG
provides concrete examples of the novel schema,
guiding the model to apply its knowledge in the re-
quired format. The combination of internalized do-
main knowledge and in-context schema exemplars
allows CPT-SFT-RAG to adapt more effectively
than models relying on only one of these aspects.



Table 1: Overall performance (F1-score) of all model variants on Test Set A (IID), Test Set B (Domain Shift), and
Test Set C (Novel Schema). Best results in each column are in bold, and other notable results are underlined.

Case Computer Science (CS) Chemistry (Chem)

Test A Test B SciERC Test A Test B ChEMU
Entity Relation Entity Relation Entity Relation Entity Relation Entity Relation Entity Relation

Chat-only 61.1 37.8 60.2 40.7 52.8 32.1 55.5 34.9 58.1 39.9 63.2 -
Chat-RAG 68.9 50.7 69.1 49.9 59.0 36.9 64.8 41.2 66.4 45.4 70.1 -

SFT-only 85.8 69.3 80.9 67.5 63.2 43.7 84.1 52.7 79.3 48.8 80.5 -
CPT-SFT 84.6 67.8 81.3 69.8 65.7 45.0 85.9 54.4 82.8 51.1 83.1 -

SFT-RAG 86.9 75.6 83.4 73.8 68.0 49.9 86.8 57.3 82.1 52.9 82.6 -
CPT-SFT-RAG 85.1 74.2 83.9 74.1 69.9 51.8 85.1 55.9 84.2 54.0 84.9 -

Summary of findings. Our experiments confirm
that supervised fine-tuning is essential for high per-
formance in IE tasks. However, to achieve robust-
ness and generalization, further steps are necessary.
Continual pre-training (CPT) is critical for building
a solid domain knowledge foundation, especially
in fields distant from the LLM’s general training
data. Retrieval-augmented generation (RAG) pro-
vides a consistent performance boost, particularly
for weaker base models, by supplying relevant con-
text at inference. The integrated CPT-SFT-RAG
framework proves to be the most effective, achiev-
ing state-of-the-art performance on domain-shifted
and novel-schema tasks, thereby demonstrating a
practical path toward building powerful and adapt-
able domain-specific IE systems.

4 Related Work

Traditional Information Extraction (IE) models
often fail to generalize across new domains and
schemas, a limitation highlighted by benchmarks
like CrossRE (Wang et al., 2022). To address this,
research has pursued unified frameworks capable
of handling heterogeneous structures, such as UIE
and USM (Lu et al., 2022; Lou et al., 2023), and has
leveraged multi-task instruction tuning to improve
transfer learning (Wang et al., 2023). Another ap-
proach involves creating generalist zero-shot mod-
els like GLiNER and UniversalNER for broader
entity coverage (Zaratiana et al., 2024; Zhou et al.,
2023).

The advent of Large Language Models (LLMs)
offers a new paradigm for IE, though studies show
that off-the-shelf models can be inconsistent and
often lag behind specialized systems (Han et al.,
2023; Ma et al., 2023). Two primary strategies
have emerged to enhance LLM-based IE. The first
is domain adaptation, where models like BioGPT
are fine-tuned on specialized corpora to internalize

domain knowledge, leading to significant perfor-
mance gains (Luo et al., 2022b; Dagdelen et al.,
2024). The second is retrieval augmentation,
which injects external evidence at inference time to
improve accuracy and robustness, as demonstrated
by frameworks like RUIE and RAMIE (Liao et al.,
2024; Zhan et al., 2025). Our work integrates these
successful strategies, combining domain-adaptive
pre-training, supervised instruction tuning, and re-
trieval to build a robust and schema-flexible IE
system.

5 Conclusion

We proposed an LLM-based framework for
domain-specific Information Extraction. Experi-
mental results in computer science and chemistry
validate this integrated strategy. Our full CPT-SFT-
RAG model demonstrates superior robustness and
generalization, excelling in challenging domain-
shift and novel-schema scenarios. Ablation stud-
ies highlight CPT’s critical role in establishing a
foundational domain understanding, especially for
knowledge-intensive fields, while RAG provides
a reliable performance boost. We find, however,
that knowledge internalized via CPT is more fun-
damental to out-of-distribution generalization than
examples supplied by RAG at inference time.

In summary, this work contributes an effec-
tive and generalizable methodology for develop-
ing high-performance, adaptable IE systems. Our
framework offers a practical solution that balances
accuracy with robustness, and our data annotation
pipeline helps mitigate the critical data bottleneck,
facilitating wider application and innovation in spe-
cialized scientific domains.

Limitations

Our framework’s performance is benchmarked on
a 7B-scale model, and its full-parameter training



is computationally intensive, which may limit scal-
ability. While larger base models are expected to
narrow in-domain gaps for SFT-only, we antici-
pate that CPT will remain most beneficial under
domain shift and novel-schema settings, and that
RAG’s marginal utility will concentrate on tail er-
rors and schema formatting rather than average-
case gains. The RAG component’s effectiveness
is contingent on retrieval quality and introduces
inference latency. Furthermore, our validation is
currently confined to entity and relation extraction.
Future work will explore scaling to larger models
using parameter-efficient fine-tuning (PEFT), im-
proving the retrieval mechanism, and extending our
methodology to more complex IE tasks like event
extraction, along with re-running our ablations at
larger scales to empirically verify these expecta-
tions.
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Pipeline

Candidate Sourcing and Stratification. Our
pipeline begins by strategically sourcing and prior-
itizing candidate passages from a large, unlabeled
corpus. This is achieved through a two-step triage
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sections. Second, an LLM assigns 1–5 scores for
domain relevance, entity richness (density of tech-
nical mentions without typed NER), and discourse
quality. Passages are then stratified into buckets
with fixed sampling ratios to balance value and di-
versity: a high-value “core” layer (high relevance
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prompt variants that, while syntactically diverse,
all adhere to a unified instructional contract defin-
ing the task, schema, and output format. For each
passage, this process yields three independent ex-
tractions {result1, result2, result3}. Each out-
put must then pass two strict validators: a JSON
schema check and a span-alignment check, which
requires every extracted span to be an exact sub-
string of the source text.

Agreement-Based Fusion and Conflict Arbitra-
tion With multiple, diverse extraction outputs
generated, the next step is to quantitatively assess
their consistency and arbitrate disagreements. We
employ a conflict-arbitration protocol governed by
a controversy score, which determines whether the
outputs exhibit sufficient consensus for automated
selection or require a tiered resolution process de-
signed to balance data quality, cost, and throughput.

https://link.springer.com/chapter/10.1007/978-3-030-58219-7_18
https://link.springer.com/chapter/10.1007/978-3-030-58219-7_18
https://link.springer.com/chapter/10.1007/978-3-030-58219-7_18
https://ojs.aaai.org/index.php/AAAI/article/view/17587
https://ojs.aaai.org/index.php/AAAI/article/view/17587
https://aclanthology.org/2022.findings-emnlp.263/
https://aclanthology.org/2022.findings-emnlp.263/
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://doi.org/10.18653/v1/2024.naacl-long.300
https://doi.org/10.18653/v1/2024.naacl-long.300
https://doi.org/10.18653/v1/2024.naacl-long.300
https://doi.org/10.1093/jamia/ocaf002
https://doi.org/10.1093/jamia/ocaf002
https://doi.org/10.1093/jamia/ocaf002
https://doi.org/10.18653/v1/2024.emnlp-main.726
https://doi.org/10.18653/v1/2024.emnlp-main.726
https://doi.org/10.18653/v1/2024.emnlp-main.726
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279


First, we define an equivalence relation ≈ (based
on alias mapping, unit normalization, etc.). Given
the set of items Ri from each result, the common
set is C = R1 ∩≈ R2 ∩≈ R3, and the controversy
score ϕ is calculated as:

ϕ =
|C|

1
3

∑3
i=1 |Ri|

Based on a predefined threshold τ , samples with
ϕ ≥ τ are deemed low-controversy. For these, we
generate an additional candidate, Rbag, via major-
ity voting. The purpose of Rbag is to synthesize
a potentially superior result by combining correct
elements from the initial outputs. A Reward Model
then selects the single best extraction from the
expanded candidate pool {R1, R2, R3, Rbag}, in-
creasing the probability of obtaining a high-quality
label.

Conversely, if ϕ < τ , the sample is flagged
as high-controversy. This path serves as a cost-
effective strategy to salvage ambiguous cases that
would otherwise be discarded by a high threshold
or accepted with errors by a low one. We selec-
tively invoke a more capable (and costly) backup
model to produce a fourth result, R4. The consen-
sus is then re-evaluated across all four outputs. If
the sample now meets the threshold, it proceeds to
the Reward Model selection; otherwise, it is finally
routed to a disagreement pool for definitive human
annotation.

Reward-Model Scoring and Thresholded Deci-
sions Following the fusion and arbitration stage,
a domain-adapted Reward Model (RM) performs
the final quality assessment. Its purpose is to select
the optimal candidate from the available set and,
crucially, to determine if that candidate’s quality is
sufficient for it to be accepted as training data.

The RM scores each candidate label set Y ∈ Y ,
where Y is the pool of candidates from the previous
step:

Y = {R1, R2, R3} ∪ {Ropt
4 } ∪ {Rbag}

Let sY = RM(Y | x) be the score for a given
candidate. We define two metrics for our decision
logic:

smax = max
Y ∈Y

sY , smean = mean
Y ∈Y

sY

To ensure our RM accurately reflects domain-
specific quality preferences, we do not use an open-
source RM directly. Instead, we first perform a

diagnostic analysis to identify its inherent biases
(e.g., preference for longer outputs or higher en-
tity counts). We then mitigate these biases by fine-
tuning the RM on a custom-built preference dataset,
which drawn from public IE datasets and expert-
verified samples.

While an RM excels at ranking responses
for a given input, its raw scores are not cali-
brated to an absolute scale of quality. We there-
fore establish three empirical decision thresholds
(Slow, Smean, Shigh) by running the calibrated RM
on a reference set of annotations pre-graded by ex-
perts as "good," "acceptable," and "bad." Slow is
set near the upper boundary of the “bad” distribu-
tion, Shigh near the lower boundary of the “good”
distribution, and Smean anchors the central mass of
the “acceptable” band for cohort-level checks.

The final decision is made using the following
rules:

• Reject: If the initial candidates are collec-
tively weak (smean < Smean) or if even the
best candidate is unacceptable (smax < Slow).

• Acceptable Confidence: If Slow ≤ smax <
Shigh. The best candidate (argmax) is kept
for auxiliary uses (e.g., populating a retrieval
KB) but is excluded from the core SFT
dataset.

• High Quality: If smax ≥ Shigh. The best
candidate is accepted as high-quality training
data.

This threshold-based gating mechanism provides
a scalable and systematic method for quality con-
trol, ensuring that only high-confidence annotations
contribute to the supervised fine-tuning process.

Human annotation, audit, and feedback loop.
Human work focuses on two roles: (i) labeling
items from the disagreement pool (high contro-
versy or low quality in the previous two steps);
and (ii) spot-checking a sample of RM-decided
outputs. Human outcomes feed back into thresh-
old calibration, RM fine-tuning, prompt variants,
alias/unit maps, and fusion heuristics, forming a
closed loop. The final products of this stage are a
high-quality training set and a domain knowledge
base for retrieval, both continuously improved by
the feedback cycle.
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