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Abstract

Information extraction from the scientific lit-
erature is a long-standing technique for trans-
forming unstructured knowledge hidden in text
into structured data, which can then be used
for further analytics and decision-making in
downstream tasks. A large body of scientific
literature discusses Trust in AI, where factors
contributing to human trust in artificial intel-
ligence (AI) applications and technology are
studied. It explores questions such as why peo-
ple may or may not trust a self-driving car, and
what factors influence such trust. The relation-
ships of these factors with human trust in AI ap-
plications are complex. We explore this space
through the lens of information extraction. That
is, we investigate how to extract these factors
from the literature that studies them. The out-
come could inform technology developers to
improve the acceptance rate of their products.
Our results indicate that (1) while Named En-
tity Recognition (NER) is largely considered a
solved problem in many domains, it is far from
solved in extracting factors of human trust in
AI from the relevant scientific literature; and,
(2) supervised learning is more effective for
this task than prompt-based LLMs.

1 Introduction

The rapid rate at which Artificial Intelligence (AI)
is developing and becoming integrated into human
life requires a thorough understanding of the dy-
namics of human trust in AI technology (Glikson
and Woolley, 2020; Teaming, 2022). Addressing
questions about the factors, or antecedents, influ-
encing trust in specific AI systems and thresholds
for excessive or insufficient trust is crucial for
developing AI responsibly and preventing poten-
tial misuse (Parasuraman and Riley, 1997; Lockey
et al., 2021; McGrath et al., 2025). It would also
support its adoption and acceptance rate among
users (Henrique and Santos, 2024).
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Studies published in psychology and behavioural
science, management, and computer science of-
fer extensive insight into this domain (e.g., Glik-
son and Woolley, 2020; Kaplan et al., 2021; Saß-
mannshausen et al., 2023). However, this literature
constantly expands, making it increasingly diffi-
cult for researchers to review and extract relevant
knowledge, and for decision makers to understand
the extent of contributing factors in the uptake of
a given technology. To address this challenge, we
explore whether factors influencing human trust in
AI can be identified automatically from the scien-
tific literature? This is particularly challenging as
identifying these factors from a scientific article
requires relevant expertise, such as that of a social
psychologist specialised in technology uptake. To
answer this question, we create the Trust in AI
dataset, where the factors influencing trust are cap-
tured in a structured dataset, making it more acces-
sible and easier for domain experts to navigate. For
example, in the sentence on self-driving cars, “..Un-
desired consequences such as anxiety, competency
loss and risk are deemed to foster resistance..” The
underlined factors need to be extracted. However,
it is not that simple. The AI and the factors fall
into different categories. That is, we need to extract
the type of AI application (e.g., self-driving car),
the factor (trust antecedent), and the type of fac-
tor (human, technological, context). The extracted
information has practical applications in research,
industry, and commercial AI production. To build
this resource, we frame the task as named entity
recognition (NER).

Trust in AI as an NER task requires entity an-
notations. However, annotating a large number of
documents can be expensive, time-consuming, and
requires extensive human expertise. Limited anno-
tated training data makes it harder to train models
that rely on large datasets. To tackle this, one ap-
proach is distant supervision to automatically gener-
ate labels (Shang et al., 2018; Liang et al., 2020; Xu



et al., 2023). In distant supervision, the labelling
procedure involves automatically detecting entity
candidates using knowledge bases with syntactic or
semantic similarity. Distant-annotations have both
pros and cons: on the one hand, distant-annotated
datasets can complement human-annotated ones,
potentially mitigating biases or limitations inher-
ent in the human-annotated dataset, and they are
easy and low-cost. On the other hand, the labels
generated might suffer from noisy and incomplete
annotation, as human expertise was not involved.

In this study, we create and benchmark a dataset
using both distant and human annotations. It is
a substantial training set that incorporates both
distant- and human-annotated data, enriching the
training set and enhancing the generalisation ca-
pacity of supervised models. The effectiveness of
distant supervision methods underscores the utility
of distant-annotated datasets in training NER mod-
els, particularly in domains requiring specialised
entity recognition (Jiang et al., 2021), such as Trust
in AI.

Our contributions are as follows: (1) We formu-
late the challenging problem of information extrac-
tion (IE) for trust in AI, an area previously unex-
plored in the NLP domain (§3); (2) We investigate
if using LLM-guided annotations as a part of the an-
notation process is feasible and effective, drawing
inspiration from studies demonstrating the capabili-
ties of large language models (LLMs) in simulating
human-annotation (Bansal and Sharma, 2023; Goel
et al., 2023; Zhang et al., 2023b); (3) We construct
a human- and distant-annotated dataset of factors
shown to influence trust development named Trust
in AI (§4)1, through an extensive process of creat-
ing re-usable guidelines with domain experts; and,
(5) We provide benchmark results for the NER task
with a detailed error analysis (§6).

2 Related Work

Trust in AI Trust is critical to the human will-
ingness to adopt AI technology in a safe and pro-
ductive way (Jacovi et al., 2021; Schaefer et al.,
2021). Consequently, it is important to know what
factors contribute to the development of an appro-
priate level of trust in an AI application. Over
450 distinct factors influencing trust development
have been identified in the scientific literature (Saß-
mannshausen et al., 2023). Decades of research
investigating trust in both humans and machines

1Data available at CSIRO Data Portal.

indicate that the antecedents of trust can be reliably
classified as: (1) properties of the trustor or human
factors (e.g., experience, risk aversion); (2) prop-
erties of the trustee or technological factors (e.g.,
performance, transparency); or, (3) properties of
the task or interaction context (e.g., time pressure,
task difficulty) (Hancock et al., 2011; Kaplan et al.,
2021; Schaefer et al., 2016).

Which of these hundreds of antecedents influ-
ences trust in a particular AI application is highly
variable. For example, the factors that contribute
to trust in an embodied robot (Hancock et al.,
2011) may be quite different to those in an algo-
rithmic decision aid (Kaplan et al., 2021). As a
result, researchers interested in trust development
are increasingly seeking approaches to specifying
idiosyncratic models of trust in individual appli-
cations. The Trust in AI dataset will provide
these domain experts with a resource to identify
the most relevant factors for their application based
on the existing literature. To our knowledge, this
is the first such resource created to be utilised by
researchers and developers of both NLP and trust
in AI.

Annotation of IE Dataset on Scientific Domain
Annotating scientific IE datasets can be approached
in two key ways: (a) annotating a small amount of
data with the help of domain experts and carefully
designed annotation guidelines (Kim et al., 2003;
Karimi et al., 2015; Friedrich et al., 2020); and,
(b) leveraging existing resources including LLMs
to automatically annotate a large amount of data
with no or little human intervention (Agrawal et al.,
2019; Jain et al., 2020; Liu et al., 2022; Ding et al.,
2023; Goel et al., 2023).

Each approach has its advantages and disadvan-
tages, with trade-offs in terms of cost, scale, and
precision in annotations. Our study fits into both
categories, as the concepts of interest are complex
expert annotations for this first attempt to create
such a resource, along with an additional distantly
annotated resource using existing knowledge (Saß-
mannshausen et al., 2023).

IE using LLMs IE using LLMs has gained
prominence in the literature due to its potential
advantages, particularly in scenarios with limited
annotated data or in domains where traditional su-
pervised approaches face challenges (Brown et al.,
2020; Bubeck et al., 2023). LLMs show the ca-
pability of recognising novel entities following
natural language instructions (Sainz et al., 2024;
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1
Trust in automation
and AI query

(artificial intelligence OR robot* OR automation OR machine intelligence OR autonomy)
AND
(trust* OR trust models OR trustworthiness OR trust calibration OR trust repair
OR trust propensity OR trust development)

2
Trust in collaboration
with AI query

(human-robot collaboration OR hybrid intelligence OR collaborative intelligence OR robot*
OR (collaboration AND artificial intelligence)
OR human-AI collaboration OR human-robot team*
OR human-autonomy team* OR augmented intelligence OR human-machine team*)
AND
(trust* OR trust models OR trustworthiness OR trust calibration OR trust repair
OR trust propensity OR trust development)

3
Meta-analysis
query

(trust OR trustworth*)
AND
(technolog* OR robot OR machine* OR automation*
OR autonomy* OR agent* OR IT system*
OR IT artifact* OR artificial intelligence OR machine learning)
AND
(trust* OR trust models OR trustworthiness OR trust calibration
OR trust repair OR trust propensity OR trust development)

Table 1: Queries by domain experts that are used in dataset curation.

Munnangi et al., 2024), or via few-shot learning,
useful when annotated data is scarce or expensive
to obtain (Agrawal et al., 2022; Li et al., 2023;
Zhang et al., 2023a). By employing prompt tech-
niques, LLMs provide a consistent approach to
various IE tasks through a single model (Wang
et al., 2022). However, studies on fine-tuning
LLMs called supervised fine-tuning (SFT) show
that supervised models, and consequently anno-
tated datasets, remain essential for achieving high
performance in IE tasks with LLMs (Zhou et al.,
2024; Gui et al., 2024; Xu et al., 2024).

3 Problem Formulation

The Trust in AI dataset can be conceptualised as
D = {Si, Pi, Li}Ni=1, where N is the total number
of sentences in the dataset. For each sentence, Si,
Pi represents its context, which is the paragraph
where the sentence Si is located, and Li is the set
of entity mentions. Each element (entity) in Li

is represented as a triplet, consisting of the start
index of a span, the end index, and the entity cate-
gory (i.e., human factor, technology factor, context
factor, and application name).

The dataset can be used for benchmarking the
Named Entity Recognition task: for a given sen-
tence Si and the Pi (context information), the ob-
jective is to recognise all elements in Li.

4 Trust in AI Dataset

We outline the process of curating the dataset, de-
sign and adjustments of the annotation guidelines,
as well as the annotation process of the Trust in
AI dataset below.

4.1 Dataset Curation

The dataset was built in two stages, yielding two
complementary sets of articles.

Article Set 1 The first set of articles, obtained
in Stage 1, was initially collected by a researcher
(one of the annotators) for an unrelated literature
review on trust in automation and AI, with a focus
on human-AI collaboration. That researcher holds
a PhD in social psychology. Articles were sourced
using two searches, one focused on (i) Trust in
automation and AI and (ii) Trust in collaboration
with AI; see 1st and 2nd queries given in Table 1.

Article Set 2 The second set of articles, for Stage
2, was drawn from a 2023 meta-analysis of the
antecedents of trust in AI (Saßmannshausen et al.,
2023). The authors of the meta-analysis conducted
an electronic search using the query (3rd query
given in Table 1). Of the 178 articles included
in the meta-analysis, we removed papers that did
not report empirical findings following a manual
inspection by the domain expert.



Number of articles
Field Set 1 Set 2 Total

Cognitive science 0 2 2
Computing 15 51 66

Defence 0 1 1
Economics 0 4 4
Education 0 1 1

Engineering 1 6 7
Ergonomics 2 30 32

Health and medicine 0 3 3
Law 0 2 2

Management 1 10 11
Neuroscience 0 1 1

Operations research 0 1 1
Psychology 1 9 10

Robotics 10 39 49

Table 2: Fields of research represented in the Trust in
AI dataset.

Databases Databases searched included the
ACM Digital Library, EBSCO2, Emerald Insight3,
the IEEE Xplore Digital Library, JSTOR4, Pro-
Quest, PsycARTICLES5, the Psychology and
Behavioural Science Collection6, PsycINFO7,
PSYNEX8, ScienceDirect9, and Web of Science10.

Composition of Final Dataset Upon combining
sets 1 and 2, eight articles were duplicated, leaving
a total of 186 articles in the final Trust in AI
dataset. The articles come from a wide range of
fields, including computing, robotics, psychology,
economics, and management, with each article po-
tentially belonging to one or more of these fields.
The largest number of articles is from the fields
of computing (66 articles) and robotics (49 arti-
cles), with sub-fields represented, including human-
computer interaction, control systems, communi-
cations, and information systems. The full list of
fields of research is given in Table 2.

4.2 Annotation Process

Two annotators (one researcher holding a PhD
in social psychology and one final year student
majoring in computer science and politics) com-

2https://www.ebsco.com
3https://www.emerald.com
4https://www.jstor.org
5www.apa.org/pubs/databases/psycarticles
6https://www.ebsco.com/products/research-

databases/psychology-behavioral-sciences-collection
7https://www.apa.org/pubs/databases/psycinfo
8https://www.medicinesfaq.com/brand/psynex
9https://www.sciencedirect.com

10https://www.webofscience.com/wos

pleted the annotation task using the Prodigy anno-
tation tool (Montani and Honnibal, 2018). Details
about the annotation interface are available in Ap-
pendix B.1. The annotation was conducted in five
phases:

i. Preparation of the guideline: The annotation
guideline was developed through a small pilot an-
notation by one annotator (the same annotator who
conducted the literature search) using 5 articles.

ii. Initial annotation: Both annotators annotated
the same 5 articles used in the first phase (233
sentences, total 535 entities).

iii. Resolution: Annotators discussed their anno-
tations on these 5 articles to resolve discrepancies,
leading to updates in the annotation guideline. The
annotation guideline is presented in Appendix B.2.

iv. Test-set annotation: We conducted the anno-
tations of the test set (in total 16 articles) with two
annotators in two parts:

• Manual annotation: Annotators annotated the
same 5 articles (used in phase iii) using the
updated guidelines and then annotated an ad-
ditional 5 randomly chosen articles manually.

• LLM guided annotation: Inspired by stud-
ies in dataset annotation (Bansal and Sharma,
2023; Goel et al., 2023; Zhang et al., 2023b),
we utilised LLMs as guidance for annotators
in the annotation of 6 new randomly cho-
sen articles. We displayed the predictions
of LLMs (details in Appendix B.3) with the
aim to assist annotators in the process and
reduce annotation time. Annotators subse-
quently rectified any errors made by LLM,
allowing us to compare the effectiveness of
LLM with manual annotation. The Cohen’s
Kappa score between LLM-agent and human
annotators was low (0.129) on these 6 articles,
highlighting the complexity of the task for
LLMs and the necessity of a human-annotated
dataset. Annotators also noted that LLMs tend
to over-annotate a given sentence, and, there-
fore, guidance in annotation increases the an-
notation time due to the rectification of errors
compared to manual annotation.

Test-set Inter-Annotator Agreement After
phase ii, inter-annotator Cohen’s kappa (κ)
score (Cohen, 1960) is 0.395 on the 5 articles for
233 sentences and 535 entities. Upon resolution

https://www.ebsco.com/
https://www.emerald.com/
https://www.jstor.org/
https://www.apa.org/pubs/databases/psycarticles/
https://www.ebsco.com/products/research-databases/psychology-behavioral-sciences-collection
https://www.ebsco.com/products/research-databases/psychology-behavioral-sciences-collection
https://www.apa.org/pubs/databases/psycinfo/
https://www.medicinesfaq.com/brand/psynex
https://www.sciencedirect.com/
https://www.webofscience.com/wos/


in phase iii, it is observed that the main disagree-
ment is the annotation of application and technol-
ogy. Following the resolution, a substantial overall
agreement of 0.933 is achieved on these 5 articles.
Kappa values over 0.9 are considered near perfect
agreement (Cohen, 1960; McHugh, 2012), possibly
reflecting the high coverage of annotation guide-
lines and the training of the annotators. The agree-
ment score of test-set annotation (phase iv) is 0.818
for 16 articles.

v. Training-set annotation: The annotator with
a PhD in social psychology annotated 34 articles
based on the updated guidelines (6 articles with
LLM-guided annotation and 28 articles manually).

4.3 Distant Annotation
To construct the distant-annotated training data,
we utilised the meta-analysis of the antecedents
of trust in AI and their corresponding dictionary
of factors (human, technological, context), con-
sisting of 483 factors in total (Saßmannshausen
et al., 2023). 11 First, we extracted noun phrases,
such as “Pro-social virtual AI’s behaviors” and
“the average human rating”, from each article us-
ing the SpaCy library12 (Honnibal and Montani,
2017). Then, we measured similarities between
these extracted noun phrases against each factor
item in the above-mentioned dictionary. We em-
ployed two approaches based on string similarity
and embedding similarity, respectively. For the
string similarity-based approach, we calculated the
longest common character subsequence between
the candidate phrase and the dictionary item. For
the method based on embedding (vector) similarity,
we encoded all noun phrases and dictionary items
using the same sentence-transformers model13 and
calculated cosine similarity between the obtained
vectors. Finally, each candidate noun phrase was la-
belled with the corresponding entity category based
on its most similar factor item from the dictionary.

4.4 Dataset Details
Descriptive statistics of the human and distant anno-
tation (string+vector) datasets are given in Table 3.
Note that we split our training set into training and
development sets. The distribution of application
and factor types (context, human, technology) in the
human-annotated dataset is presented in Figure 1.

11The dictionary of factors can be found at tandfonline.
com/doi/full/10.1080/00140139.2022.2120634.

12https://spacy.io
13all-mpnet-base-v2 (accessed Oct 2025)

Human Annotated
Statistic Train Dev Test Distant Overall

# articles –34– 16 136 186
# paragraphs 340 41 95 7,087 7,563

# sentences 1,833 184 548 35,173 37,738
avg len sentences 146.53 157.83 153.22 152.12 151.89

# tokens 47,829 5,101 15,229 971,127 1,039,286

# entities 4,140 286 1,142 880,112 5,568
avg len entities 12.56 9.83 13.66 8.04 12.65

Table 3: Descriptive statistics of Trust in AI dataset
including both human- and distant-annotations.

Figure 1: Distribution of factors and application of our
human-annotated dataset.

5 Experimental Setup

Task Description Our task involves the identi-
fication and classification of factors (e.g., human,
context) within a given sentence. Since a span can
have more than one-factor category or nested en-
tities, the task is formulated as a span-based NER
task. The problem can be formulated as the token-
level classification task for a sequence of words
{w1, · · · , wn}, wherein entity labels {y1, · · · , yn}
are assigned.

NER models We benchmark the effectiveness
of several models that belong to three groups:
(1) Fully supervised: We investigate three su-
pervised methods; (1.1) PLM, which consists of
a PLM encoder (Liu et al., 2019) and a span-
based classifier on top of the encoder (Zhong
and Chen, 2021); (1.2) Seq2seq-BERT14 (Straková
et al., 2019), a sequence-to-sequence model consist-
ing of an encoder-decoder with LSTM; and (1.3)
BiaffineNER15 (Yu et al., 2020), formulated as a
graph-based parsing task composed of a BiLSTM
encoder with a biaffine classifier. (2) Few-shot

14https://github.com/ufal/acl2019_nested_ner
15https://github.com/LindgeW/BiaffineNER

tandfonline.com/doi/full/10.1080/00140139.2022.2120634
tandfonline.com/doi/full/10.1080/00140139.2022.2120634
https://spacy.io/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/ufal/acl2019_nested_ner
https://github.com/LindgeW/BiaffineNER


Category Overall
Method Application Human fac Technology fac Context fac Micro F1 Macro F1

PLM 63.71±1.8 30.74±3.4 22.04±2.9 54.36±1.2 49.38±1.1 42.71±1.9

Seq2seq-BERT 57.48±1.2 28.14±2.5 19.45±3.0 41.47±1.1 43.52±0.9 35.16±2.0

BiaffineNER 61.12±1.4 32.17±3.4 20.17±2.5 46.17±2.0 46.43±1.5 37.23±2.1

Few-shot Learning 33.04±0.2 17.91±0.1 40.52±0.4 18.31±0.4 26.42±0.3 26.20±0.3

Distant Supervision 62.30±1.6 23.12±2.7 53.92±0.5 30.08±1.7 48.51±1.3 42.36±1.0

Table 4: Comparison of models in terms of entity-level F1 for NER task. The best results are boldfaced, while the
second-best is underlined. ‘fac’ stands for factor. We report the best results for PLM (RoBERTa-Large), Few-shot
Learning (GPT-OSS BM25 5-shot) and Distant Supervision (RoBERTa-Large string+vector), and the full results
can be found in Appendix A.

learning: Leveraging in-context learning (ICL)
methods as formulated by Bölücü et al. (2023). (3)

Distant supervision: We use PLM with
RoBERTa encoder (Base or Large) (Liu et al.,
2019) and a span-based classifier on top of the
encoder, with a weighted loss where the labels of
weights are the similarity scores used in the distant
annotation. In the rest of the paper, we refer to the
PLM with the encoder (supervised setting) as PLM
(encoder name) and to the distant annotation model
simply as RoBERTa Base/Large to avoid confu-
sion. The training consists of two steps: training
with distant-annotated data, followed by continual
learning with the human-annotated training set.

Training Configuration

• Fully supervised: All hyper-parameters used
in the supervised baseline models for the NER
task are tuned on the development set. For
PLM, the hyperparameters are the learning
rate of 5e-4, max length of 128, a context
window of 200 tokens and a batch size of 16,
and models are trained for max epochs of 30.
For Seq2seq-BERT and BiaffineNER, we use
the default hyperparameters suggested by the
authors except for the learning rate (5e-3).

• Few-shot learning: For zero- and few-shot
learning, we adopt the prompt template pro-
vided by the EasyInstruct library16 (Ou et al.,
2024) for ICL. We use to models: GPT3.5-
Turbo and GPT-OSS (20B) (OpenAI et al.,
2025) (temperature: 0.1). We follow the study
of Bölücü et al. (2023) to select ICL samples.

• Distant Supervision: We fine-tune all hyper-
parameters of the method using the develop-
ment set. The hyperparameters are the learn-
ing rate of 5e-4, max length of 128, a batch

16https://github.com/zjunlp/EasyInstruct

size of 16, and models are trained for a maxi-
mum of 30.

All experiments are repeated three times, and mean
values and standard deviations are reported.

Evaluation Metrics We use entity-level Macro
F1 score (Nakayama, 2018) for the NER task.

6 Results and Analysis

The results are shown in Table 4. We observe
that the supervised models outperform those us-
ing LLM in zero and few-shot settings, consistent
with the studies of Jimenez Gutierrez et al. (2022)
and Bölücü et al. (2023). The PLM (RoBERTa-
Large) model performs the best in most categories,
except for technology. Additionally, both the best
and second-best models rely on human-annotated
datasets for their performance. In few-shot learn-
ing, ICL also requires a very small amount of
human-annotated data. While this approach is pow-
erful in its ability to adapt to new tasks with limited
annotated data, the performance of this model is
still behind that of the supervised models. This
highlights how important human-annotated data is
for these models to do well in NER tasks.

Another observation is the substantial improve-
ment observed in recognising the technology fac-
tor through distant supervision. Considering that
this factor has the highest distribution within the
distant-annotated dataset, it suggests that achieving
better results with distant supervision may require a
larger distant-annotated dataset during the training
process.

In the annotation of factor types and application,
one word can refer to one or more factor types. For
instance, the word adaptability in user and robot
adaptability refers to both human and technology
factors. Moreover, the mentioned factor may span
several words, not all of which are included in the

https://github.com/zjunlp/EasyInstruct


Human Annotated Extracted by NER Error Type

— displaying information (technology) Complete False Positives
care context (context) — Complete False Negatives
context (context) context (technology) Wrong Label Right Span
production (context) production robots (application) Wrong Label Overlapping Span
design factors of the robotic interface (technology) robotic (application) Right Label Overlapping Span

Table 5: Selected examples for the error types made by the fully supervised method PLM (RoBERTa-large).

Method Error Type Context Application Technology Human Total

PLM (RoBERTa-Large)

Complete False Negatives 100 135 204 189 628
Complete False Positives 51 95 148 100 394
Wrong Label Right Span 14 23 61 62 160
Wrong Label Overlapping Span 3 26 48 57 134
Right Label Overlapping Span 83 102 19 40 244

RoBERTa-Large string+vector

Complete False Negatives 96 170 209 187 662
Complete False Positives 115 76 128 76 395
Wrong Label Right Span 8 3 38 70 119
Wrong Label Overlapping Span 3 2 37 75 117
Right Label Overlapping Span 32 69 62 34 197

Table 6: Statistical details of error types observed in the NER methods.

same factor. For instance, an article might mention
training of communication and trust calibration,
where training of communication is a technology
factor while training · · · of trust calibration is hu-
man factor. This complexity makes the NER task
challenging. Even though span-based models are
applied to extract factors and applications, the re-
sults of NER models on the annotated dataset re-
main relatively poor, except for application. It
aligns with the resolution phase of the annotation,
where annotators find that human and technology
factors are the most confusing, prompting an up-
date to the annotation guidelines to provide clarity
in distinguishing between the annotation of these
factors. Supervised models still struggle to extract
factors, a task that is challenging even for human
annotators with domain expertise. Finally, appli-
cation is expected to be used to label entities that
may contain the AI technology or the studied use
case, potentially contributing to lower results for
the technology factor.

6.1 Error Analysis

Entity-level F1 score, the most common metric for
NER models, only credits a prediction when both
the span and the label precisely match the anno-
tation. We investigate the predictions of the NER
methods to elucidate the common errors made by
these methods for the newly designed problem of
Trust in AI and the newly defined entity types.

We analyse the predictions of the two methods
from our baseline methods: (1) Fully supervised:

PLM (RoBERTa-Large) and (2) Distant supervi-
sion: RoBERTa-Large string+vector.

Following Nejadgholi et al. (2020), we analyse
the errors in five categories:

• Complete False Positive: An entity is pre-
dicted by the NER model, but it is not anno-
tated in the human-annotated text.

• Complete False Negative: A human-
annotated entity is not predicted by the NER
model.

• Wrong Label Right Span: A human-
annotated entity and a predicted entity by the
NER model share the same spans but different
entity types.

• Wrong label Overlapping Span: A human-
annotated entity and a predicted entity have
overlapping spans but different entity types.

• Right label Overlapping Span: A human-
annotated entity and a predicted entity have
overlapping spans and the same entity types.

Samples of error types made by the fully super-
vised method can be found in Table 5.

The error analysis of the NER methods, as de-
tailed in Table 6, provides insights into the per-
formance and challenges faced by different ap-
proaches. For the PLM (RoBERTa-Large) model
(fully supervised), the most common error type
is Complete False Negatives, particularly with



the technology and human entities, indicating that
many entities annotated by humans were missed by
the models. It is observed that the PLM (RoBERTa-
Large) (fully supervised) method detects the cor-
rect span in the sentence but mislabels it (Wrong
Label Right Span).

For the RoBERTa-Large string+vector model
(distant supervision), the errors are distributed sim-
ilarly to the PLM (RoBERTa-Large) model, with
Complete False Negatives being the most com-
mon error type. However, this model shows im-
provement in identifying entities with overlapping
spans, as indicated by a higher count of Right La-
bel Overlapping Span errors compared to the PLM
(RoBERTa-Large) model.

We also analysed the entities for each error type
and observed that entities are typically single to-
kens in the Wrong Label Right Span error type,
whereas entities are often multiple tokens in the
Wrong Label Overlapping Span and Right Label
Overlapping Span error types.

The occurrence of the Right Label Overlapping
Span error type may be attributed to the nature of
span-based annotation. In span-based annotation,
a span may encompass more than one entity type
or contain nested entities (e.g., synchronous and
co-located teamwork and co-located teamwork are
annotated as context in the dataset).

We observe that fully supervised approaches still
struggle with newly designed entity types (con-
text, human, technology) of the newly designed
problem. Distant supervision methods, while im-
proving in some aspects such as overlapping span
identification, still exhibit similar error distribu-
tions. Additionally, few-shot learning using LLMs
struggles with NER tasks for the newly designed
problem with new entity types. These findings
underscore again the importance of the annotated
dataset for extracting trust-related factors in AI
literature. Moreover, while the distant-annotated
dataset is noisy, it is still a valuable resource for
training NER models in our context of trust in AI.
Future work should focus on refining distant anno-
tation techniques and exploring hybrid approaches
that combine the strengths of both fully supervised
and distant supervision methods to improve the ac-
curacy and reliability of entity recognition in the
domain of trust in AI.

7 Conclusion and Future Work

Identifying antecedents of human trust in AI from
scientific literature has been largely explored only
via manual inspection of relevant literature. This
manual process, crucial in the development of new
AI applications, has hardly been automated itself
using techniques developed in artificial intelligence
domains, including NLP. We are the first study to
tackle this problem.

We investigated whether information extraction
techniques, and in particular named entity recog-
nition (NER), can be developed in this space to
extract factors of trust in AI. While NER is con-
sidered a largely solved problem in many domains,
using it to obtain factors related to trust in AI in sci-
entific literature is unexplored, requiring the careful
creation of a dataset with expert annotators. We
also explore distant annotation. These led to a
novel dataset, which we named Trust in AI. We
then benchmarked state-of-the-art NER techniques
such as those using in-context learning and LLMs.
We showed that the existing LLMs, such as GPT,
are not effective in extracting concepts of interest
in Trust in AI. Our dataset is one important step
in opening an avenue for further research in this
space.

In the future, we plan to extend the dataset to
include relations between factors and trust and en-
tity resolution to identify and link entities that refer
to the same entity, providing a more cohesive and
accurate representation.

Ethics Statement

As we create a dataset, there are ethical consider-
ations about the use of the data. The dataset used
in our work is collected from scientific articles that
are publicly available. However, some may require
subscriptions to the journals for their users. We
make links to the articles available so as not to
redistribute those without their publishers’ permis-
sion. The annotations were conducted by two of
the authors as part of their research duties.

Limitations

Language. This dataset only uses English scien-
tific literature, which may limit its usage for other
languages.

Subjectivity and Background Knowledge. The
dataset annotation is done by two human annotators
with different background knowledge, with one
expert in the Trust in AI domain with a psychology



background and another in computer science and
politics.
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A All results

We applied several models to benchmark the newly
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the pattern-based method, which was employed to
label the distantly annotated dataset, to label the
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based method, all the results belonging to the four
groups are listed in this section.

Fully supervised For the PLM fully supervised
model, we applied several PLMs as encoders of the
model. The results are given in Table 7.

Few-shot learning We applied the ICL methods
(5 shot) explained in the study of Bölücü et al.
(2023). The results of each ICL sample selection
method are given in Table 8.

Distant supervision We applied the distant
supervision method with RoBERTa-Base and
RoBERTa-Large as encoders using string (syntac-
tic), vector (semantic), and combined string+vector
datasets to assess the individual impacts of string,
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Category Overall
Method Application Human fac Technology fac Context fac Micro F1 Macro F1

BERT-Base 60.45±1.2 29.13±4.7 19.45±4.2 46.14±0.7 43.10±2.09 38.30±2.3

RoBERTa-Base 64.25±1.1 33.24±1.1 17.61±1.4 51.43±1.8 48.10±0.9 41.63±0.6

RoBERTa-Large 63.71±1.8 30.74±3.4 22.04±2.9 54.36±1.2 49.38±1.1 42.71±1.9

Table 7: PLM fully supervised model with several PLMs as an encoder for the NER task. The best results are
boldfaced. ‘fac’ stands for factor.

Category Overall
LLM Application Human fac Technology fac Context fac Micro F1 Macro F1

Zero-shot
GPT 3.5 7.81±0.7 6.50±0.5 8.64±1.3 10.92±0.0 7.61±0.2 6.91±0.1

GPT-OSS 18.60±0.2 14.54±0.1 22.00±0.4 14.11±0.0 14.32±0.2 13.81±0.1

Random Sampling
GPT 3.5 21.31±2.1 11.21±1.7 13.33±1.8 11.50±2.0 15.22±2.4 15.51±2.0

GPT-OSS 34.10±0.5 19.72±0.6 36.20±0.9 19.81±1.1 24.84±0.9 24.24±0.8

KATE
GPT 3.5 22.03±0.8 12.87±0.8 18.08±0.9 10.76±0.6 15.62±0.8 15.94±0.7

GPT-OSS 35.20±0.4 20.02±0.4 39.41±0.5 17.44±0.3 25.42±0.4 25.02±0.3

BM25
GPT 3.5 18.22±0.4 10.53±0.8 25.62±1.2 9.14±1.3 16.13±1.0 15.88±1.1

GPT-OSS 33.04±0.2 17.91±0.1 40.52±0.4 18.31±0.4 26.42±0.3 26.20±0.3

Table 8: Zero-shot, and 5-shot results of each ICL method for the NER task. The best results are boldfaced. ‘fac’
for factor.

Category Overall
Method Application Human fac Technology fac Context fac Micro F1 Macro F1

RoBERTa-Base string 60.84±2.2 17.24 ±1.1 48.85±2.3 31.36±2.6 46.08±0.7 39.57±0.3

RoBERTa-Large string 59.81±2.1 22.42±1.4 54.01±1.2 29.84±0.4 46.91±1.4 41.51±1.6

RoBERTa-Base vector 64.22±0.8 17.81±1.5 51.32±0.9 31.83±1.8 48.51± 0.9 41.30±1.3

RoBERTa-Large vector 60.62±2.0 21.29±2.5 54.07±0.4 26.57±3.0 48.12±1.3 40.64±0.8

RoBERTa-Base string+vector 64.88±0.2 17.49±1.0 50.40±2.8 32.33±1.1 48.38±0.7 41.27±0.8

RoBERTa-Large string+vector 62.30±1.6 23.12±2.7 53.92±0.5 30.08±1.7 48.51±1.3 42.36±1.0

Table 9: Distant supervision experiments. The best results are boldfaced.

Figure 2: Interface for manual annotation of the NER task.

vector, and their combination. The results are given
in Table 9. The results indicate that using vec-

tor similarity alone or in combination with string
similarity generally yields better performance com-



String Vector String+Vector

Entity Precision Recall F1 Precision Recall F1 Precision Recall F1

Application 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Human 0.7 5.4 1.3 4.7 3.6 4.1 1.1 8.8 1.9
Context 1.3 22.0 2.4 1.0 56.2 1.8 1.0 64.1 9.5
Technology 5.1 60.5 9.5 0.0 0.0 0.0 5.1 60.5 0.0

Micro 3.2 25.0 5.7 1.0 7.4 1.7 2.1 31.5 3.9
Macro 1.8 22.0 3.3 1.4 15.0 1.5 1.8 33.3 3.3

Table 10: Entity-type-wise results of the rule-based method using string, vector and string+vector similarity for
NER task.

pared to using string similarity alone.

Pattern-based We applied the pattern-based
method to label the test data. Table 10 shows preci-
sion, recall and F1 scores for different entity types.
As the knowledge dictionary contains entities for
factors (human, technological, context), the preci-
sion, recall, and F1 scores of application are both
reported as 0.0. The results indicate that the rule-
based method effectively captures certain relevant
instances for specific entity types. The string simi-
larity method performs exceptionally well in iden-
tifying technology factors, achieving a recall of
60.5% and a F1 score of 9.5. In contrast, the vector
similarity method excels with context factors, with
a recall of 56.2% and an F1 score of 1.8.

B Details of Dataset

B.1 Annotation Interface
The Prodigy annotation tool is utilised for anno-
tation. We design a web page that integrates the
Prodigy annotation tool, allowing annotators to in-
put their names and select the article and specific
sections before initiating the annotation process.
The interface for NER is illustrated in Figure 2,
demonstrating the annotation process. As depicted
in the figure, context information, including the
paragraph containing the sentence, as well as the
title and section names of the article, is presented
for each sentence.

B.2 Annotation Guideline
The model extracts a variety of information from
scientific articles that study the relationship be-
tween certain factors (or antecedents) and human
trust in an artificial intelligence (AI) system. The
model extracts the Application of the AI under
consideration as well as the antecedents, each of
which belongs to one of three categories: Human,
Technology, and Context. Each article may contain

more than one factor and more than one application.
The aim is to create a large, searchable database
that contains the key information of the existing
research on the antecedents of human trust in AI.
The following guideline defines the specific anno-
tation criteria for each piece of information of the
model (Figures 3, 4, 5, and 6).

B.3 LLM Guidance Annotation
For LLM guidance, we called the gpt-3.5-turbo
version of ChatGPT integrated into the spaCy
library. We adopted a temperature of 0.3
and used ICL (random sampling- 3-shot) with
spacy.SpanCat.v2 and spacy.TextCat.v2 com-
ponents of spaCy and prompt defined by the library
to pre-annotate the dataset for NER and RE tasks,
respectively (Figure 7).

The LLM-guided annotation interface for NER
is illustrated in Figure 8. As depicted in the figure,
in addition to manual annotation, LLM guidance is
presented for each sentence.



Figure 3: Human.



Figure 4: Context.



Figure 5: Technology.



Figure 6: Application.

Figure 7: LLM guidance annotation guideline.

Figure 8: Interface for LLM-guided annotation of the NER task.
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