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Abstract

Recent trends in NLP aim to improve reasoning
capabilities in Large Language Models (LLMs),
with key focus on generalization and robust-
ness to variations in tasks. Counterfactual task
variants introduce minimal but semantically
meaningful changes to otherwise valid first-
order logic (FOL) problem instances altering
a single predicate or swapping roles of con-
stants to probe whether a reasoning system can
maintain logical consistency under perturba-
tion. Previous studies showed that LLMs be-
comes brittle on counterfactual variations, sug-
gesting that they often rely on spurious surface
patterns to generate responses. In this work,
we explore if a neurosymbolic (NS) approach
that integrates an LLM and a symbolic log-
ical solver could mitigate this problem. Ex-
periments across LLLMs of varying sizes show
that NS methods are more robust but perform
worse overall that purely neural methods. We
then propose NSCoT that combines an NS
method and Chain-of-Thought (CoT) prompt-
ing and demonstrate that while it improves per-
formance, NSCoT still lags behind standard
CoT. Our analysis opens research directions
for future work. The code for this work is
available at https://github.com/hannahhb/
counterfactual _NS_eval

1 Introduction

LLMs have shown remarkable success on a range
of different tasks including logical reasoning (Wei
et al.,, 2022; DeepSeek-Al, 2024), mathemat-
ics (Lewkowycz et al., 2022), coding (Du et al.,
2024), and creative tasks (Ramesh et al., 2021).
These models have up to trillions of parameters
and are pretrained to predict the most likely next
word given the preceding words (Radford et al.,
2018) on vast amounts of digitized data (Brown
et al., 2020; Chowdhery et al., 2023). However,
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Figure 1: Illustration of our data and models. We test
models in their ability to reason over default and counter-
factual inputs, where key nouns were swapped (top). We
compare fully neural models (LLMs) with neurosym-
bolic methods that combine LLMs with logical solvers.
In our example the neural model fails on the counterfac-
tual input but the neurosymbolic method makes correct
predictions (bottom), suggesting higher robustness. Ex-
ample taken from (Wu et al., 2024).

they cannot inherently perform formal rule based
inference how a symbolic solver would.

Wu et al. (2024) showed that these models suffer
in test conditions that systematically differ from
the inputs they observed during training by lever-
aging “counterfactual” (CF) tasks. CF tasks are
carefully constructed to require the same reasoning
as the original problem but with different assump-
tions. For example, for logical reasoning, Wu et al.
(2024) demonstrated that replacing nouns and ad-
jectives with less plausible alternatives in the input
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data to render the statements incompatible with any
observed data can lead to a performance drop of
20%. This massive drop suggests that LLMs mem-
orize their training data rather than learning how to
reason logically. Figure 1 illustrates this process.

In this work, we explore whether a neurosym-
bolic (NS) approach could mitigate this problem
for logical reasoning tasks. In such an approach,
a neural network is used to translate natural lan-
guage (NL) premises and conclusions to first-order
logic (FOL) statements. Then, an FOL solver is
used to determine if the conclusion logically fol-
lows from the premises. Intuitively, delegating the
reasoning process to an external tool—a symbolic
FOL solver—should make the process less sensi-
tive to “counterfactual” perturbations.

Our main research question is: are NS meth-
ods more robust to counterfactual variation than
purely neural approaches? To answer this question,
we employ LINC (Olausson et al., 2023), an NS
method for logical reasoning that uses an LLM to
translate NL into FOL, and compare against the
LLM alone. Our experiments across LLMs with
7B to 32B parameters answer the question in the
positive. To the best of our knowledge, we are
the first to test the sensitivity of NS methods on
counterfactual tasks.

However, we also find that LINC performs
worse overall. We hypothesise that the model
requires more explicit guidance to correctly con-
vert NL statements to FOL. To address this, we
then propose NSCoT which combines Chain-of-
Thought (CoT) prompting (Wei et al., 2022) and
NS approaches to improve the overall performance
of NS methods. Specifically, we include example
CoT reasoning in the LLM’s in-context learning
examples and prompt the LLM to generate its CoT
reasoning when translating into FOL. We find that
NSCoT substantially outperforms LINC but still
lags behind a purely LLM approach with CoT.

In sum, our contributions are:

1. We provide the first rigorous exploration of the
robustness of neurosymbolic methods for log-
ical reasoning on counterfactual inputs. We
show that neurosymbolic methods are more
robust but achieve lower performance than
purely neural methods.

2. We then propose NSCoT that integrates neu-
rosymbolic methods and CoT. We demon-
strate that NSCoT outperforms standard neu-
rosymbolic methods, but still lags behind CoT.

2 Related work

2.1 Testing LLMs on perturbed data

Prior work has studied the sensitivity of LLMs
to data perturbations. Jiang et al. (2024) demon-
strated that simply replacing the primary noun in
the prompt (e.g., from “Linda” to “Bob”) causes
the model to fail, despite the logical structure of the
task remaining unchanged. The paper concluded
that LL.Ms suffer from the token bias problem, a
phenomenon wherein LLMs exhibited a dispro-
portionate reliance on frequently occurring lexical
items such as specific nouns or structural cues to
guide their reasoning process. Wu et al. (2024)
introduced perturbations for a variety of tasks in-
cluding arithmetic, code execution, logic, drawing,
chord fingering, and chess. Their perturbations
make the tasks deviate from the default, generally
assumed conditions, which they called as “coun-
terfactual” (CF). These CFs were manually con-
structed and carefully controlled to fix the difficulty
levels of items and keep comparisons fair. They
hypothesised that LLMs simply memorise their
training examples rather than actually reasoning
about problems. They found that although CoT rea-
soning and few-shot learning can reduce the gap in
performance between default and CFs, a significant
performance drop remains.

The token bias problem has also been studied
in the mathematical domain. The GSM-Symbolic
benchmark by Mirzadeh et al. (2025) systemati-
cally tests the impact of token bias by creating
parsable templates and sampling different proper
names and numerical values in mathematical prob-
lems. They showed that compared to default set-
tings, numerical perturbations lead to about a 4%
performance drop. A similar effect is found with
proper names, further showing that the accuracy
difference compounds when combined with the
numerical perturbations.

Prior work has also shown that even when tasks
remain within the reasoning capacity of humans,
LLMs exhibit significant failures when problem
complexity increases, presumably because such
problems are rare in their pretraining data. For
example, Shojaee et al. (2025) used the Tower of
Hanoi problem as an example where they showed
that while LLMs solve the problem with a small
number of disks, their reasoning fails with larger
number of disks.

Similar to prior work, we apply LLMs to a per-
turbed dataset to test their sensitivity to data per-



turbations. In contrast, however, we use LLMs in
a neurosymbolic approach where we delegate the
reasoning step to a symbolic solver. We note that
in the literature, terms such as “counterfactual” are
also used to describe hypothetical conditions that
are false in the real world (Li et al., 2023). We
use the term “counterfactual” hereinafter to be con-
sistent with Wu et al. (2024), i.e., perturbed data
samples.

2.2 Neurosymbolic reasoning

Recent work has explored the integration between
LLMs and symbolic systems to improving the rea-
soning capabilities of LLMs. Such neurosymbolic
methods introduce a two-stage pipeline where natu-
ral language is first translated into FOL statements,
which are then passed into a symbolic solver for
resolution. This positions the LLM to perform a
more abstract role of semantic parsing rather than
direct reasoning. For logical reasoning, recent neu-
rosymbolic methods include LINC (Olausson et al.,
2023), Logic-LM (Pan et al., 2023), and SatLM (Ye
et al., 2023).

In this work, we use LINC as a representative
of neurosymbolic reasoning approaches and test its
robustness to counterfactual perturbations. To the
best of our knowledge, we are the first to test LINC
in the context of counterfactual examples.

3 Methods

3.1 Dataset

We mainly work with the data from Wu et al.
(2024), a subset of the FOLIO dataset (Han et al.,
2024) which has been turned into a ‘counterfactual’
data set. In FOLIO, ‘premises’ are paired with dif-
ferent ‘conclusions’ which either logically follow
from the premises (True), or they don’t (False), or a
conclusion cannot be drawn given the information
in the premises (Uncertain). The task of a model is
to classify the given the natural language premises
and conclusion into one of these 3 labels.

Wau et al. (2024) manually swapped core noun
variables in the premises with semantically implau-
sible nouns which however do not alter the logical
conclusion. Figure 1 shows an example. Intuitively,
a robust reasoner would not be confused by this,
while a brittle reasoning model which relies on sur-
face cues would. There are 81 examples in this
dataset, which we will refer to as RR (Reasoning
or Reciting, from Wu et al.’s paper title).

Due to limited examples and low representation

of more complex reasoning problems in RR we
also compare the performance of our methods on
the full FOLIO validation set of 204 samples, even
though this does not have a counterfactual variant.
We note that this is an in-distribution task since
we pass examples from the train split of the same
dataset as in-context learning input to the LLM.

3.2 Neurosymbolic Methods

As our neurosymbolic method, we use
LINC (Olausson et al., 2023) where an LLM acts
as a semantic parser to translate natural language
premises and conclusions into FOL statements.
These statements are then passed into a logic
solver called Prover9 (McCune, 2005-2010) to
predict the classification label. We use 8 in-context
learning examples following Olausson et al.
(2023).

The solver raises an error if an input cannot be
parsed (i.e., if the LLM generate FOL statements
that do not comply with Prover9’s format). To
handle this, we follow Olausson et al. (2023): we
prompt the LLM 10 times to obtain 10 generations,
pass each of them to Prover9 to get a predicted
label, and perform majority voting to get the final
predicted label excluding the error cases. If all
generations are errors, we count the prediction as
wrong in performance evaluation.

3.3 Neural Approaches

We compare our neurosymbolic method LINC
against three fully neural approaches of varying
complexity following Olausson et al. (2023). The
input prompt for each model contains 8 in-context
learning examples followed by the given premises
and conclusion to be evaluated:

1. Naive where we directly prompt an LLM
to generate the True/False/Uncertain label.
The 8-shot examples consist of premise-
conclusion pair along with the label.

2. Chain of Thought (CoT). Here, our 8-shot
examples contain of premises, conclusion and
the label, together with a human-created rea-
soning chain explaining why the label follows
from the premises and conclusion pair. We
use the reasoning chains given by Olausson
et al. (2023). We lead the prompt with “Let’s
think step by step”. The output consists of a
generated reasoning chain and a final label.

3. ScratchPad. The LLM is prompted to
generate both FOL statements and the
True/False/Uncertain label. The scratchpad



Model Naive ScratchPad CoT LINC \ NSCoT
Default 85.19 87.65 87.65 60.49 54.32
Mistral0.3 7B CF 44.44 65.43 61.73 56.79 49.38
A -40.75* -21.99* -25.92*  -3.70 -4.94
Default 83.95 86.42 87.65 66.67 62.96
Qwen2.5 7B CF 65.43 76.54 86.42 66.67 62.96
A -20.99* -9.92* -1.23 0.00 +2.47
Default 92.59 91.37 88.89 70.37 75.31
Qwen2.532B CF 81.48 86.42 90.12 74.07 74.07
A -11.117 -4.94 +1.23 +4.30 -1.23
Default 90.12 87.65 92.59 69.14 66.67
Gemma3 12B CF 72.84 75.31 90.12 66.67 62.96
A -17.32* -12.34* -2.47 -2.47 -3.71
Default 86.42 87.65 92.59 60.49 60.49
Llama3.1 8B CF 48.15 72.84 72.84 55.56 59.26
A -29.63* -14.81* -19.75%  -4.94 -1.23

Table 1: Accuracies on the default and the counterfactual data (CF) as well as their differences (A; O is best) on
RR. For a robust model, we expect a non-significant difference (A) between the Default and CF condition. We
mark brittle models for which this difference is significant (p < 0.05; McNemar’s text (McNemar, 1947)) with an
asterisk. The best result per model and metric is marked in bold.

baseline is included to test whether querying
the LLM to generate formal FOL statements
can impact its performance in comparision
to CoT where we ask for a more ambiguous
"reasoning".

To keep the comparison with LINC fair, for each
method we prompt the LLM 10 times to get 10 gen-
erated labels and perform majority voting to obtain
the final predicted label. We note that LINC is most
likely to benefit from a high number of generations
due to its susceptibility to Prover9 errors.

3.4 Models

We test instruction-tuned open-source models
from four families and of varying sizes: Mis-
tral0.3 (Jiang et al., 2023), Qwen2.5 (Bai et al.,
2023), Llama3.1 (Llama Team, 2024) and Gemma3
(Gemma Team, 2024). These span a representative
set of models, with the Qwen and Mistral family
are chosen for their focus on reasoning tasks while
Llama, and Gemma signify more general-purpose
language models. We test on model sizes between
7 billion and 32 billion parameters where available.

3.5 Maetrics

To measure robustness to counterfactual perturba-
tions, we simply calculate the difference between
the accuracy on the default data and the accuracy
on the counterfactual data in the RR dataset. An
ideal model would not be impacted by counterfac-
tual perturbations as these do not impact the logical

validity of the inputs. The ideal value of this accu-
racy difference is thus zero.

4 Main Results

In our main results, we compare the neurosymbolic
approach LINC against our three neural baselines
on the counterfactually manipulated RR dataset.
These results are shown in the left part of Table 1,
which shows the accuracies on the default and the
counterfactual data along with their differences for
these methods. We make a number of observations.

Robustness First, Table 1 shows that for LINC,
the accuracy differences between the default and
the counterfactual data are less than 5% across all
models. This difference is not statistically signifi-
cant, indicating robustness of LINC against coun-
terfactual manipulation. In contrast, the fully neu-
ral methods generally show larger (over 10%) and
statistically significant accuracy differences. One
exception is CoT which shows good robustness al-
beit inconsistently, with only 3 out of 5 underlying
LLMs. These findings suggest that the neurosym-
bolic LINC approach enhances robustness to coun-
terfactual perturbations, compared to fully neural
methods.

Overall performance Second, we observe that
the neural methods generally outperform LINC in
terms of overall performance on both the default
and the counterfactual data. However, there are
exceptions to this trend. For instance, LINC out-
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Figure 2: Comparison of the few-shot prompts in LINC (left) and NSCoT (right). In contrast to LINC, for NSCoT
we pass examples that include reasoning chains between the language input and FOL translations; and instruct the
model to produce a reasoning chain during generation. After this step, we pass in the generated FOLs to Prover9 for

both models.

performs Naive on the counterfactual data with
Mistral0.3, Qwen2.5 7B, and Llama3.1. These
mixed results suggest that further analysis is neces-
sary. In the next section, we propose a new method
designed to improve the overall performance of
LINC.

5 Enhancing LINC with CoT

We hypothesise that LINC struggles when the natu-
ral language statements are convoluted and thus
requires more explicit guidance for NL conver-
sion to FOL statements. Thus, we propose to in-
clude an intermediary “reasoning” chain in each
few-shot learning example so that the LLM can
acquire extra context of how an NL statement
should be converted into FOL. We call this ap-
proach NSCoT (short for Neuro-symbolic Chain-
of-Thought).

5.1 Method

We use the ChatGPT 03 reasoning model to gen-
erate reasoning chains for our examples, and
insert them between the NL and FOL in the
prompt. We obtain one reasoning chain for each in-
context learning example for a total of 8 reasoning
chains (an abbreviated example, with only 1-shot
is shown in Section A). We manually verify the
reasoning chains to ensure their correctness. By

inserting these reasoning chains, we aim for LLMs
not to be confused by examples where the inferred
FOL does not directly follow from the text (cf.,
Figure 2). To handle Prover9 errors, we follow
a similar approach to LINC where we obtain 10
generations and perform majority voting to get the
final predicted label.

We note here that the reasoning chain in each in-
context learning example is generated using Chat-
GPT 03 model. This is different from the CoT
approach we included in our baseline, where we
included human-generated reasoning chains follow-
ing Olausson et al. (2023). In addition, we prompt
NSCoT to perform reasoning in response to each
premise individually. Our CoT baseline performs
reasoning over all premises at once, in one contigu-
ous block.

5.2 Evaluation

We evaluate NSCoT on RR (N=81) under the same
conditions as our main model (Table 1, right). In ad-
dition, we also validate NSCoT, LINC, and selected
baseline methods on the full FOLIO validation data
set of default premises (N=204). This is more than
double the size of RR and contains examples that
were excluded by Wu et al. (2024) in creating RR.
Due to its increased size and diversity, we expect
this dataset to be a more representative testbed for
reasoning accuracy on default premises than RR.



Model Naive CoT LINC NSCoT
M0.37B 5343 5637 5294 53.92
Q2.57B 59.31 70.59 58.33 66.67
Q2.532B 66.18 7549 68.14 71.08
L3.1 8B 33.33 70.59 58.33 68.14
G3 12B 6422 7745 57.35 63.24

Table 2: Accuracy on the FOLIO validation set (Han
et al., 2024) which has more than double the size of RR.
M=Mistral, Q=Qwen, L=Llama, G=Gemma.

We report the accuracy numbers in Table 2.

5.3 Results

From Table 2, we note several observations. First,
the performance of Naive, CoT, and LINC substan-
tially drops across all models relative to their perfor-
mance on the default RR data in Table 1. This find-
ing suggests that this larger dataset contains more
diverse and challenging examples than RR. Second,
Naive outperforms LINC across three out of five
models.! Moreover, the CoT baseline consistently
outperforms LINC across all five models. This
trend is similar to that of Table 1 where the base-
line methods generally outperform LINC. Third,
NSCoT consistently outperforms LINC across all
models and outperforms Naive across 4 out of 5
models.” This finding highlights the strength of
our proposed incorporation of reasoning chains for
FOL conversion. That said, NSCoT consistently
lags behind the CoT baseline, which underlines the
strength of purely neural approaches in terms of
overall performance.

Looking at Table 1 to compare LINC and NSCoT
on the smaller RR dataset, we observe that, like
LINC, NSCoT shows small and non-significant
accuracy differences between the default and the
counterfactual data for all models. Moreover, these
differences are similar in magnitude to those of
LINC. This finding suggests that NSCoT is as ro-
bust as LINC to counterfactual perturbations.

Instances in the RR data set have an average of
4.3 premises (average length = 283 words), while
the FOLIO validation instances have an average
of 5.3 premises (average length = 386 words). We
checked, using the FOLIO data set, the decline in
performance of LINC and NSCoT over instances
of increasing complexity, as approximated by the
number of premises. Figure 3 shows the accuracy

' All models except for Qwen2.5 32B and Gemma3 12B.
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Figure 3: This plot shows the accuracy of LINC (blue)
and NSCoT (green) on inputs with different numbers of
premises (2 to 8) on the full FOLIO data. The presented
results are averaged over all LLMs (as listed in Table 2).
LINC suffers a sharper decline in performance than
NSCoT.

of each model on a subset of instances with a fixed
number of premises (x-axis; varying from 2 to 8).
The result is averaged over all tested LL.Ms in Ta-
ble 2 (variance is shown as shaded areas). We
observe that the gap between NSCoT and LINC
increases slightly as the number of premises in-
creases. This suggests that NSCoT effectively
leverages the intermediate reasoning step to deal
with more complex sets of premises.

From Table 1, we observe that NSCoT outper-
forms (or is on par with) LINC on the default data
of the smaller RR dataset only with Qwen2.5 32B
and Llama 3.1. This is in contrast with the re-
sults we observe on the full FOLIO validation set
of default premises in Table 2 where NSCoT con-
sistently outperforms LINC. It also conflicts with
our results in Figure 3 where NSCoT slightly out-
performs LINC for all levels of complexity. We
suspect that this discrepancy is due to the sam-
ple selection heuristics that Wu et al. (2024) used
in creating RR and leave this investigation to fu-
ture work. We contend that the results in Table 2
and fig. 3 provide stronger evidence for the advan-
tages of NSCoT due to the larger number and more
complex examples in the full FOLIO validation set.

To sum up, our experiments showed that: (1)
Neurosymbolic methods outperform purely neu-
ral methods in terms of robustness; (2) Pure neu-
ral methods, particularly with CoT reasoning, are
stronger in terms of accuracy; and (3) the accuracy
of neurosymbolic methods can be improved with
additional CoT reasoning steps while maintaining
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Figure 4: Confusion matrices for the predicted vs gold
labels on the CF (left) vs Default (right) versions of
RR for LINC (top) and Naive (bottom). Predicted and
ground truth labels are on the x- and y-axis respectively.
The underlying LLM is Qwen2.5 7B.

strong robustness, albeit not to the level of neural
CoT methods. The remainder of this paper presents
and error analysis and an in-depth discussion of our
results, with an eye to future research directions.

6 Discussion

6.1 Class Distributions for Default vs
Counterfactual Predictions

Recall that the ground truth label distribution in the
default and counterfactual (CF) versions of RR are
identical, as the perturbations had no bearing on the
logical conclusion of the premises. We thus com-
pare the confusion matrices between predicted and
ground truth class distributions of several models.
We start by inspecting the predicted class distri-
bution shift for LINC and the Naive method on
RR (Figure 4), and subsequently compare the label
distributions of all tested methods on the larger FO-
LIO validation data set (Figure 5). All results are
based on Qwen2.5 7B.

Figure 4 shows that while LINC maintains a
nearly identical confusion matrix profile across
both settings, the Naive method shows a notice-
able shift in the distribution of labels. Particularly,
around 20% of samples flip from the True class to
the False class, leading to a substantial reduction in
accuracy. This behavior reflects the Naive model’s
tendency to rely on surface-level token associations,
which collapse when predicates or constants are
perturbed. In contrast, LINC’s symbolic pipeline
ensures that perturbations are more likely to lead
to either consistent or Uncertain predictions.
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Figure 5: Confusion matrices comparing LINC, NSCoT,
CoT and Naive for the FOLIO validation set. Predicted
and ground truth labels are on the x- and y-axis respec-
tively. The underlying LLM is Qwen2.5 7B.

Figure 5 compares the confusion matrices for
Naive, CoT, NSCoT and LINC based on the
Qwen7B instruction fine-tuned model and on the
larger FOLIO validation data. We can observe that
both the CoT and Naive models show a higher
False Negative (FN) rate for Uncertain class in-
stances i.e. Naive and CoT methods both tend to
under-predict Uncertain. This suggests that neural
methods overfit to surface regularities, confidently
outputting categorical answers even when evidence
is ambiguous.

In contrast, the neurosymbolic methods (LINC
and NSCoT) produce more Uncertain predictions.
However, this comes with a trade-off: some of
these are false positives because the LLM produces
predicates with overlapping meaning, and Prover9
as a symbolic solver cannot detect this, thus pre-
dicting Uncertain for otherwise resolvable cases.
Overlapping meaning refers to instances contain-
ing distinct predicates with shared denotation that
form a disconnect in the logical flow. For example,
if the LLM output contains the predicates “Dog”
and “CuteDog” then Prover9 will not be able to be
resolve them (i.e. that “CuteDog” implies “Dog”),
causing the logical reasoning process to fail. A
more elaborate example is included in Section A.2.
The quantity of these errors is captured by the Un-
certain false positives in the respective confusion
matrices of LINC and NSCoT (Figure 5). This
error class is an instance of the more general issue
of implicit information in NL statements (e.g., that
“CuteDog” implies “Dog”), which has also been
noted in prior work Olausson et al. (2023).



6.2 Error analysis for NSCoT and LINC

To better understand the FOL conversion errors
of both LINC and NSCoT, we manually classified
the observed errors on all the examples from the
FOLIO validation set where the methods gener-
ated FOL statements that did not comply with the
Prover9 syntax. Here, "error" is generations in
which Prover9 was not able to resolve the given
FOL statements due to the specified error classes.
These were 341 cases for LINC and 366 cases for
NSCoT, out of a total of 2040 queries (204 exam-
ples x 10 generations). We found two common
classes of erros. The first are arity mismatches
where predicates are used with inconsistent num-
bers of arguments across premises in the same in-
stance (e.g. Likes(x,y) vs. Likes(x)). The second
common error class pertains to unexpected tokens.
This typically arises based on malformed or in-
complete FOL strings (e.g., missing parentheses,
unbalanced connectives), which cause Prover9 to
throw parsing errors.

Figure 6 shows the relative prevalence of both
error classes for LINC and NSCoT with Qwen2.5
7B. NSCoT produces more arity mismatch errors
compared to LINC. However, LINC produces more
unexpected token errors than NSCoT.

We conducted preliminary tests with a verifica-
tion module to refine generations which did not
execute due to Prover9 errors on both methods. In
this setup, the Prover9 error messages and a few
examples of common syntax corrections were put
into a new prompt, and the model was re-queried in
a loop until the FOL expressions executed success-
fully or a maximum of 3 retries was reached. How-
ever we had similar findings to Pan et al. (2023)
in which they showed that the execution rate of
the symbolic prover increases using a refiner but at
the same time the accuracy decreases due to more
semantic errors.

6.3 Faithfulness of CoT

While CoT outperforms NS methods in terms of
accuracy and achieves comparable robustness on
three out of six models (Figure 4), the underlying
reasoning can be “unfaithful”, introducing halluci-
nated steps or logical inconsistencies. CoT’s high
false negative rate for the Uncertain label fits with
a concern about unfaithfulness: the models CoT
text output is not actually representing internal log-
ical reasoning, but rather reproducing the most fre-
quently observed labels during training which was

0.6 1

0.4 -

Proportion

0.2 A

0.0 -

LINC NSCoT

Hll Multiple arities Unexpected token

Figure 6: Proportion of the two most common FOL
conversion errors of both LINC and NSCoT: arity mis-
match and unexpected token. The underlying LLM is
Qwen2.5 7B.

either a True or False label.

The limits of CoT prompting have come under
scrutiny by Paul et al. (2024) who showed that
CoT rationales often reflect post-hoc justifications
rather than the true decision process of the model.
They modified the generated CoT reasoning such
as making it incomplete, masking some tokens, or
introducing some mistakes. They then re-queried
the model with the modified reasoning and found
that the model still gives the correct output, sug-
gesting that the output does not actually depend on
the printed reasoning chains, and that the reasoning
chains are produced post-hoc after the final class
prediction has already been computed.

An important and intriguing path for future work
could be to leverage this method to test whether
CoT faithfulness changes between CF and default
samples. If the method genuinely reasons over the
given input, we expect to not observe a drop in
faithfulness since the complexity of the problems
stays fixed due to the design of the CF examples.

7 Conclusion

We have presented the first rigorous comparison
of strong neural methods with the neurosymbolic
method LINC — which combines LLM-based nat-
ural language to FOL parsing with an FOL solver
— on the task of logical reasoning. We showed that
while LINC shows stronger robustness results, it
falls short of the neural methods in terms of per-
formance. We then extended LINC with CoT rea-
soning steps showing that reasoning accuracy is
enhanced while maintaining robustness. However,
the fully neural methods still achieve the strongest
results based on performance.

This paper addresses the timely and relevant



question of neurosymbolic approaches in Al which
are desirable due to a promise of a decreased car-
bon footprint due to the outsourcing of part of the
reasoning to efficient external modules (such as
logical reasoners). Furthermore, neurosymbolic ap-
proaches promise a tighter control on interpretabil-
ity and faithfulness of the results. Our results
present a step in this direction, by carefully evaluat-
ing NS methods on logical reasoning and proposing
steps for future research.

We note that further optimization is most critical
for improving the accuracy of the neurosymbolic
methods, rather than robustness, as the main source
of performance degradation comes from inconsis-
tent NL-FOL translations. Optimizing this stage
would therefore allow the symbolic reasoning com-
ponent compute on correct logical forms, yielding
more faithful and accurate deductions.

Limitations

Our work is limited to one type of reasoning
namely first-order logic and should in the future
be expanded to tasks such as math word prob-
lems (Huang et al., 2025) (using SymPy as a sym-
bolic solver), coding, and planning. There is a need
for systems which are more robust to variation and
faithful under hard problems. Other limitations of
this study include the small test data size and exclu-
sion of larger-sized models due to computational
resources.
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A Appendix
A.1 1-shot example for NSCoT

Task. The following is a first-order logic (FOL) problem. The
problem is to determine whether the conclusion follows from
the premises. The premises are given in the form of a set of
first-order logic sentences. The conclusion is given in the form
of a single first-order logic sentence. The task is to translate
each of the premises and conclusions into FOL expressions so
that the expressions can be evaluated by a theorem solver like
Prover9 to determine whether the conclusion follows from the
premises. There should be a reasoning step in the middle starting
with REASONING:.. The output should follow format TEXT:
REASONING: FOL: TEXT: REASONING: FOL....Expressions
should adhere to the format of the Python NLTK package logic
module.Remember to never the FOL predicates too long or over-
lapping meanings with other predicates. Also you must not have
empty predicates like Conductor(). Symbols like <, >, = are not
allowed.

Premises.
» All dispensable things are environment-friendly.
¢ All woodware is dispensable.
All paper is woodware.
No good things are bad.
All environment-friendly things are good.
A worksheet is either paper or is environment-friendly.
Conclusion. A worksheet is not dispensable.

Evaluate.

TEXT: All dispensable things are environment-friendly.
REASONING: We universally quantify over every entity, assert-
ing that being dispensable implies being environment-friendly.
FOL: all x. (Dispensable(x) -> EnvironmentFriendly(x))

TEXT: All woodware is dispensable.

REASONING: Every instance of woodware falls under the
dispensable category.

FOL: all x. (Woodware(x) -> Dispensable(x))

TEXT: All paper is woodware.

REASONING: Paper is a subset of woodware, so paper implies
woodware.

FOL: all x. (Paper(x) -> Woodware(x))

TEXT: No good things are bad.
REASONING: For every x, if x is good then x cannot be bad.
FOL: all x. (Good(x) -> -Bad(x))

TEXT: All environment-friendly things are good.
REASONING: Environment-friendly implies good.
FOL: all x. (EnvironmentFriendly(x) -> Good(x))

TEXT: A worksheet is either paper or is environment-friendly.
REASONING: Worksheet must be in exactly one of those two
categories.

FOL: ((Paper(Worksheet) &

-EnvironmentFriendly (Worksheet)) |
(-Paper(Worksheet) &
EnvironmentFriendly(Worksheet)))

TEXT: A worksheet is not dispensable.

REASONING: We assert the negation of dispensability for the
specific constant Worksheet.

FOL: -Dispensable(Worksheet)

A.2 Comparison between consistent and
ambiguous FOL generations



Generation 1 (Ambiguous) Generation 2 (Consistent)

1 |Vz,y. (WildTurkey(z) A WildTurkey(y) A (x =|Vax. (WildTurkey () —
EasternWildTurkey V 2 = OsceolaWildTurkey V = =|(Eastern Wild Turkey (x) v
GouldsWildTurkey V z = MerriamsWildTurkey V | OsceolaWildTurkey (x) v
x = RioGrandeWildTurkey V =z =|GouldsWildTurkey(x) V
OcellatedWildTurkey) A x # y — 1) MerriamsWild Turkey () \Y

RioGrandeWildTurkey () v
OcellatedWildTurkey (z)))

2 |=WildTurkey Type(Tom, Eastern Wild Turkey) —FasternWild Turkey (Tom)

3 |=WildTurkeyType(Tom, OsceolaWild Turkey) —OsceolaWild Turkey (Tom)

4 | =WildTurkeyType(Tom, GouldsWildTurkey) A | =GouldsWild Turkey (Tom) A
- WildTurkey Type(Tom, MerriamsWildTurkey) — A|—-MerriamsWild Turkey (Tom) A
- WildTurkey Type(Tom, RioGrandeWild Turkey ) —RioGrandeWildTurkey(Tom)

5 |WildTurkey(Tom) WildTurkey(Tom)

6 | WildTurkeyType(Tom, OcellatedWild Turkey) OcellatedWild Turkey (Tom)

Problem: The predicate WildTurkeyType is never linked to WildTurkey,| Correct: All predicates share the same unary form,
creating ambiguity between types and individuals. so Tom’s type is inferred successfully.

Table 3: The correct inference is True, but ambiguous predicate names in “Generation 1” lead to Uncertain.
We compare ambiguous (left) and consistent (right) FOL statements with predicate numbering. Red indicates
inconsistent predicate forms causing uncertainty; Teal indicates consistent unary naming that yields a correct
inference.
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